证明(3+7的开根号)的n次方整数部分一定是奇数.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:48:17

证明(3+7的开根号)的n次方整数部分一定是奇数.
证明(3+7的开根号)的n次方整数部分一定是奇数.

证明(3+7的开根号)的n次方整数部分一定是奇数.
貌似不对啊,1.5的2次方是2.25,整数部分是偶数.
设(3+√7)^n的整数部分是p1 小数部分是q1
(3-√7)^n的整数部分是p2 小数部分是q2
(3+√7)^n+(3-√7)^n=2(0Cn3^n+2Cn3^(n-2)+...)是偶数
所以两个数的小数部分之和是1(q1+q2=1)所以:p1+p2=奇数
而0

小数的n次方整数一定是小数
整数的n次方整数一定是整数
3+7的开根号的整数部分是5
5的n次方整数一定是奇数
所以
(3+7的开根号)的n次方整数部分一定是奇数