大学概率论的问题甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:39:29
大学概率论的问题甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%.
大学概率论的问题
甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%.
大学概率论的问题甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%.
设至少m个座位,
设每一名观众为xi服从0-1分布,xi~0 1
1/2 1/2
则x平均数=1/2,方差=1/4,
由题P{(x1+~+x1000)>m}<0.01
有P{[(x1+~+x1000)-1000*1/2]/根号下(1000*1/4)>(m-1000*1/2)/根号下(1000*1/4)}<0.01
(这个公式是由某个中心极限定理引申来的,具体的最好去书上看一下)
得$((m-1000*1/2)/根号下(1000*1/4))>=0.99
(标准正态函数原先的符号打不出来,用$代替)
${(m-500)/5根号10}>=0.99
然后查标准正态分布表,得(m-500)/5根号10的范围,求出m