A+B+C=111000,其中A+C=66000,A+B=99000,想ABC各是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:29:01
A+B+C=111000,其中A+C=66000,A+B=99000,想ABC各是多少
A+B+C=111000,其中A+C=66000,A+B=99000,想ABC各是多少
A+B+C=111000,其中A+C=66000,A+B=99000,想ABC各是多少
66000+99000=165000(A+C+A+B)
165000-111000=54000(A)
66000-54000=12000(C)
99000-54000=45000(B)
故:A=54000
B=45000
C=12000
化简:a(a-b)(b-c)(c-a)/bc(a-c)(b-a)(c-b)其中a=3,b=-1,c=6
A+B+C=111000,其中A+C=66000,A+B=99000,想ABC各是多少
a×b×c=a+b+c!其中a.b.c.中最大的数是(
3c-{2c-[6a-(c-b)+c+(a-2b-6a)]} 其中a=2 b=3分之2.c=-3
初一化简求值题½ a-[4b-c-(½ a-c)]+[6a-(b-c)],其中a=0.1,b=0.2,c=0.3
化简并求值:1/2*a-[4b-c-(1/2*a-c)]+[6a-(b-c)],其中a=0.1,b=0.2,c=0.3
证明:(10a+c)(10b+c)=100(ab+c)+c*c,其中a+b=10
已知a+b>c,b+c>a,a+c>b求证a^3+b^3+c^3-a(b-c)^2-b(c-a)^2-c(a-b)^2-4abcc,b+c>a,a+c>b 所以不妨设a=x+y b=y+z c=z+x 其中x,y,z>0 则a^3+b^3+c^3-a(b-c)^2-b(c-a)^2-c(a-b)^2-4abc(化简消元)=-2(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+4xyz)c,b+c>a,a+c>b
已知向量a=(3,-4) |b|=|c|=1 且a//b a⊥c 则b+c= 其中a b c 均为向量 其中a b c 均为向量其中a b c 均为向量 其中a b c 均为向量其中a b c 均为向量
若c=根号(a²+b²),其中a=6,b=8
5(a-3c+b)-7(a-b+5c),其中a=1,b=2,c=-1
(b-a)2+(c-b)2+(c-a)2,其中a+19=b+9=c+8
(b-a)^2+(c-b)^2+(c-a)^2,其中a+19=b+9=c+8
计算(a-b)2+2(a-b)(b-c)+(c-d)2的值,其中a-c=-1.4
已知线段a,b,c(其中a>b >c),求作:线段AB=a+b-2c.
化简:|a-b-c|-|b+c-a|+|b+c| ,其中:c
证明(10a+c)(10b+c)=100(ab+c)+c²,其中a+b=5
3/1a-(2/1a-4b-6c)+3(-2c+2b)其中a=-12,b=-1,c=5