定义:对于函数f(x),在使f(x)≤M成立的所有常数M中,我们吧M的最小值叫做函数f(x)的上确界函数g(x)=log x²+2/|x| (x≠0)的上确界是? 1 /2求详细

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:22:17

定义:对于函数f(x),在使f(x)≤M成立的所有常数M中,我们吧M的最小值叫做函数f(x)的上确界函数g(x)=log x²+2/|x| (x≠0)的上确界是? 1 /2求详细
定义:对于函数f(x),在使f(x)≤M成立的所有常数M中,我们吧M的最小值叫做函数f(x)的上确界
函数g(x)=log x²+2/|x| (x≠0)的上确界是?
1 /2
求详细过程

定义:对于函数f(x),在使f(x)≤M成立的所有常数M中,我们吧M的最小值叫做函数f(x)的上确界函数g(x)=log x²+2/|x| (x≠0)的上确界是? 1 /2求详细
x²+2/|x|
=|x|²+1/|x|+1/|x|≥3(|x|²*1/|x|*1/|x|)的立方根=3
底数0<1/2<1
所以是减函数
所以g(x)≤log1/2(3)
所以M=log1/2(3)

x²+2/|x|为偶函数 不妨令x>0 基本不等式:x²+1/x+1/x<=3 x=1
log(1/2) (x²+2/|x|) <=log(1/2)(3)

定义:对于函数f(x),在使f(x) 定义在R+上的函数f(x)对于任意m,n属于R+,都有f(mn)=f(m)+f(n),x>1时,f(x) 定义:对于函数f(x) ,在使f(x)≤ M成立的所有常数M中,我们把M的最小值叫做函数f(x)的上确界.例如函数f(x)=-X^2+4X的上确界是4,则函数log1/2,(x^2+2)/|x|(即是以二分之一为底,(x^2+2)/ |x| 的对数)的上确 设函数y=f(x)定义在R上,对于任意实数mn,f(m+n)=f(m)*f(n),且当X 关于函数有界性定义的疑问数学上说如果对于变量x所考虑的范围(用D表示)内,存在一个正数M,使在D上的函数值f(x)都满足 │f(x)│≤M ,则称函数y=f(x)在D上有界,亦称f(x)在D上是有界函数.那么对一 定义:对于函数f(x),在使f(x)≤M成立的所有常数M中,我们吧M的最小值叫做函数f(x)的上确界函数g(x)=log x²+2/|x| (x≠0)的上确界是? 1 /2求详细 已知定义在(0,正无穷)上的函数f(x)满足对于任意m,n,都有f(m*n)=f(m)+f(n),且当x>1,f(x)1 (1/2)设f(x)是定义在R的函数.对于任意m.n属于R恒有f(m+n)=f(m)+f(n).且当x>0时,f(x) 已知f(x)是定义在R上的函数,对于任意m,n属于R恒有f(m+n)=f(m)+f(n).接题目.当x>0时,f(x) 已知f(x)是定义在R上的函数,对于任意m,n属于R恒有f(m+n)=f(m)+f(n),当x>0时,f(x) (1/2)设f(x)是定义在R的函数.对于任意m.n属于R恒有f(m+n)=f(m)+f(n).且当x>0时,f(x) 对于函数f(x),在使f(x)>=M成立的所有常数M中,我们把M的最大值称为函数f(x)的“下确界对于函数f(x),在使f(x)>=M成立的所有常数M中,我们把M的最大值称为函数f(x)的“下确界”,例如f(x)=x的平方+2x 定义在R+上的函数f(x),对于任意的m,n属于R+,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1 定义在R+上的函数f(X),对于任意的m,n属于正实数都有f(mn)=f(m)+f(n)成立,当x>1时,f(x) 定义在正实数上的函数f(x),对于任意的m,n都属于正实数,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1 定义在R+上的函数f(x),对于任意的m,n∈R+,都有f(mn)=f(m)+f(n),x>1时,f(x) 定义在正实数上的函数f(x),对于任意的m,n都属于正实数,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x) 设函数f(x)和g(x)都是定义在集合M上的函数,对于任意的x属于M,都有f(g(x))=g(f(x))成立,称