-2sin(B-C)cos(B+C)=sin2C-sin2B怎么化的?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:16:53
-2sin(B-C)cos(B+C)=sin2C-sin2B怎么化的?
-2sin(B-C)cos(B+C)=sin2C-sin2B怎么化的?
-2sin(B-C)cos(B+C)=sin2C-sin2B怎么化的?
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
-2sin(B-C)cos(B+C)
= -2[sin(B-C+B+C)+sin(B-C-B-C)]/2
=-[sin2B+sin(-2C)]
=-[sin2B-sin2C]
=sin2C-sin2B
cos(a-b)cos(b-c)+sin(a-b)sin(b-c)=
sin(B+C)=?cos(B+C)=?
非线性方程解析解-x0*cos(b)*cos(c)-y0*(-sin(a)*cos(b)*cos(c)-cos(a)*sin(c))-z0*(-cos(a)*cos(b)*cos(c)+sin(a)*sin(c))=0-x0*cos(b)*sin(c)-y0*(-sin(a)*cos(b)*sin(c)+cos(a)*cos(c))-z0*(-cos(a)*cos(b)*sin(c)-sin(a)*cos(c))=0 -x0*cos(b)-y0*sin(a)*co
sin(A+B/2)=cos(C/2)
求非线性方程组的“解析解”-x0*cos(b)*cos(c)-y0*(-sin(a)*cos(b)*cos(c)-cos(a)*sin(c))-z0*(-cos(a)*cos(b)*cos(c)+sin(a)*sin(c))=0 -x0*cos(b)*sin(c)-y0*(-sin(a)*cos(b)*sin(c)+cos(a)*cos(c))-z0*(-cos(a)*cos(b)*sin(c)-sin(a)*cos(c))=0 -x0*cos
cos^B-cos^C=sin^A,三角形的形状
sin²A+sin²B=cos²C
cos²a-cos²b=c,则sin(a+b)sin(a-b)=
在三角形中,已知,cos C/cos B=(3a-c)/b 求:sin B
sin^2[(B+C)/2]=[1-cos(B+C)]/2
请问:为什么sinB+sinC=2sin[(B+C)/2]cos[(B-C)/2].
-2sin(B-C)cos(B+C)=sin2C-sin2B怎么化的?
数学三角函数的提A,b,c,∈(0,90) ,sin a + sin c = sin b ,cos b + cos c= cos a ,则b-a
三角形ABC,求证cos(A+B)=-cosC,cos[(A+B)/2]=sin(C/2)和sin(3A+3B)=sin(3C),sin[(3A+3B)/2]=-cos[(3C)/2]
若sin a+sin b+ sin c=0,cos a+cos b+cos c=0,求cos(a-b)
在三角形ABC 中,若sin A:sin B:sin C=3:2:4,则cos C的值
已知b,c∈{0,π/2},b=sin(cosb),c=cos(sinc),比较b,c大小
cos^2A - cos^2B + sin^2C=2cosA *sinB *sinC证明