你听说过费马点吗?如图,P为△ABC所在平面上的一点.如果∠APB=∠BPC=∠CPA=120 ,则点P就是费马点.费马点有论文要是自己写的.要1000字以上.写好当然重谢!( )/~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:48:38

你听说过费马点吗?如图,P为△ABC所在平面上的一点.如果∠APB=∠BPC=∠CPA=120 ,则点P就是费马点.费马点有论文要是自己写的.要1000字以上.写好当然重谢!( )/~
你听说过费马点吗?如图,P为△ABC所在平面上的一点.如果∠APB=∠BPC=∠CPA=120 ,则点P就是费马点.费马点有
论文要是自己写的.要1000字以上.
写好当然重谢!( )/~

你听说过费马点吗?如图,P为△ABC所在平面上的一点.如果∠APB=∠BPC=∠CPA=120 ,则点P就是费马点.费马点有论文要是自己写的.要1000字以上.写好当然重谢!( )/~
费马点定义
在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点.(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角.所以三角形的费马点也称为三角形的等角中心.(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点.
编辑本段费马点的判定
(1)对于任意三角形△ABC,若三角形内或三角形上某一点E,若EA+EB+EC有最小值,则E为费马点.费马点的计算
(2)如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点.
编辑本段证明
我们要如何证明费马点呢:费马点证明图形
(1)费马点对边的张角为120度.△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1.(3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1

别丢人了,论文还让别人写?
200分悬赏也没人给你,洗洗睡吧

你听说过费马点吗?如图,P为△ABC所在平面上的一点.如果∠APB=∠BPC=∠CPA=120 ,则点P就是费马点.费马点有论文要是自己写的.要1000字以上.写好当然重谢!( )/~ 如图,P为△ABC所在平面外一点,PB=BA,PC=CA.求证:PA⊥BC 如图,P为△ABC所在平面外一点,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面ABC于H.求证: 如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的任意两个顶点构成三角形PAB,三角 在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB所在直线与点E,PF∥AB交BC所在直线与点D,交AC所在直线与点F.在下列情况下,判断AB,PD,PE,PF之间的关系:(1)当点P在△ABC内时,如图1 如图,P为三角形ABC所在平面外一点,PA垂直平面ABC,角ABC=90度,求证,BC垂直PB 在已知三角形ABC所在的平面上存在一点P,是他倒三角形则称三个顶点的距离之和最小(1)阅读理解:①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的 如图p为三角形abc内的一点,d,e,f分别是点p关于边ab,bcac所在直线的对称点 如图△ABC是等边三角形,D是AC边的中点,P是BC延长线上一点,且CP=CD,以△ABC的边BC的终点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴建立直角坐标系1.求证△DBP为等腰三角形2.若△ABC的边长 如图,已知点P为△ABC所在平面外一点,点D,E,F分别在射线PA,PB,PC上,并且PD/PA=PE/PB=PF/PC.求证:平面DEF/ABC 如图已知点P是直角三角形ABC所在平面外一点,AB为斜边且PA=PB=PC求证平面PAB⊥平面 若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为(2)如图,在锐角△ABC外侧作等边△ACB′连接BB′.求 关于费马点的题目若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为; (2)如图5,在锐角△ABC外侧作等边△ACB′ 如图,三角形ABC的三边AB等于AC等于BC,三角形ABC所在平面上有点p 已知P是△ABC所在平面外一点,PA,PB,PC两两垂直,H是△ABC的垂心求证:PH⊥平面ABC(图为空间四边形P-ABC) 如图 p为三角形ABC所在平面外一点,PA⊥平面ABC,角ABC=90度,AE⊥PB于E,AF⊥PC于F,求证:PC⊥平面AEF 1.已知在直角三角形ABC中,AB=3,AC=4∠BAC=60°,P是△ABC所在平面外一点,若PA⊥平面ABC,且PA=3,求点P到BC的距离.2.如图,AB是圆O的直径,PA垂直于圆O所在的平面,C为圆O上的任意点(C与A,B不重合).AE⊥PC,AF 如图P是ABC所在平面外一点,且PA垂直平面ABC,若O,Q分别是 如图P是ABC所在平面外一如图P是ABC所在平面外一点,且PA垂直平面ABC,若O,Q分别是三角形ABC和三角形PBC的垂心,是证明OQ垂直平面PBC