当方程 sin^4(x)-2cos^2(x)+a^2=0有实数解时,求实数a的可取的值并解此方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:50:47

当方程 sin^4(x)-2cos^2(x)+a^2=0有实数解时,求实数a的可取的值并解此方程
当方程 sin^4(x)-2cos^2(x)+a^2=0有实数解时,求实数a的可取的值并解此方程

当方程 sin^4(x)-2cos^2(x)+a^2=0有实数解时,求实数a的可取的值并解此方程
sin^4(x)-2cos^2(x)+a^2=0
sin^4(x)-2(1-sin²x)+a²=sin^4(x)+2sin²x+a²-2=0
sin²x=√(3-a²)-1
只有 当3-a²≥1时才有实数解,
所以 a²≤2,a的取值范围 -√2≤a≤√2
sinx=±√[√(3-a²)-1]
x1=arcsin√[√(3-a²)-1]
x2=-arcsin√[√(3-a²)-1]

答:
(sinx)^4-2(cosx)^2+a^2=0
(sinx)^4-2+2(sinx)^2+a^2=0
[(sinx)^2]^2+2(sinx)^2+a^2-2=0
[(sinx)^2+1]^2=3-a^2
因为:
-1<=sinx<=1
所以:
0<=(sinx)^2<=1
1<=(sinx)^2+1<=2
2...

全部展开

答:
(sinx)^4-2(cosx)^2+a^2=0
(sinx)^4-2+2(sinx)^2+a^2=0
[(sinx)^2]^2+2(sinx)^2+a^2-2=0
[(sinx)^2+1]^2=3-a^2
因为:
-1<=sinx<=1
所以:
0<=(sinx)^2<=1
1<=(sinx)^2+1<=2
2<=[(sinx)^2+1]^2<=4
所以:
2<=3-a^2<=4
-1<=-a^2<=1
-1<=a^2<=1
所以a的取值范围是:
-1<=a<=1
(sinx)^2+1=√(3-a^2)
(sinx)^2=√(3-a^2)-1
sinx=√[√(3-a^2)-1]或者sinx=-√[√(3-a^2)-1]
x=2kπ±arcsin{√[√(3-a^2)-1]}

收起

化简得2sin^2(x)cos^2(x)-2cos^2(x)+a^2=0 2cos^2(x)*(sin^2(x)-1)+a^2=0 所以a等于正负2cos(x) 范围就是大于等于-2小于等于2