设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:11:35
设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系.
设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系.
设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系.
证明:(α1,α1+α2,α2+α3)=(α1,α2,α3)P
P =
1 1 0
0 1 1
0 0 1
因为 |P|=1≠0,所以P可逆.
所以 α1,α2,α3 与 α1,α1+α2,α2+α3 等价.
所以 r(α1,α1+α2,α2+α3) = r(α1,α2,α3) = 3.
且 Ax=0 的解可由 α1,α1+α2,α2+α3 线性表示.
故 α1,α1+α2,α2+α3 是Ax=0 的基础解系.
线性代数,一道填空题.设α是齐次线性方程组Ax=0的解,而β是非齐次线性方程组Ax=b的解,则A(3α+2β)=_______.该题应该如何做?
设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明:α1+α2,α2+α3,α3+α1也是Ax=0的一个基础解系
设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系.
设α1α2是三元线性方程组Ax=b的两个不同解,且r(A)=2,则Ax=b的通解为
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解求A
设α1、α2、α3是线性方程组Ax=0的基础解系,β是Ax=b的解,求证向量组α1、α2、α3、β线性无关如题,紧急!
设α1、α2、α3是线性方程组Ax=b的解,若C1α1+C2α2+…+Csαs也是Ax=b的一个解,求C1+C2+…+Cs?
设3元非齐次线性方程组Ax=b有解α1=(1,2,3),α2=(-1,2,3),且R(A)=2,则Ax=b的通解是________.设3元非齐次线性方程组Ax=b有解α1=(1,2,3)^T,α2=(-1,2,3)^T,且R(A)=2,则Ax=b的通解是________.
设α1,α2,kα1+kα2是线性方程组Ax=b的解,则k1+k2=
设α1,α2,α3是3阶方阵A的列向量组,且齐次线性方程组Ax=b有唯一解,则
设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b设,〖α_(1,) α〗_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解
设α1,α2,α3,α4是齐次线性方程组Ax=0的一个基础解系.证明α1+α2,α2+α3,α3+α4,α4+α1也是Ax=0的基础解系.刘老师您好.请问这个如何证明?结论成立么?
设3元非齐次线性方程组Ax=b的两个解为α=(1,0,2)T,β=(1,-1,3)T,且系数矩阵A的秩r(A)=2,
设α是非齐次线性方程组AX = B的解向量,β是AX = o 的解向量,则 1/2 (α + β )是方程组?的解向l量
设β是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,证明β,α1,α2,...,αn-r线性无关.(线性代数,
设x0是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,证明1,x0,x0+a0,x0+a2...xo+an-r是方程组AX=b的n-r+1个线性无关的解向量2AX=b的任意解X可表示成:X=k0X0+k1(X0+a1
设α1,α2,α3是其次线性方程组Ax =0的基础解系,证明:β1=α1+α2+α3,β2=α1+α2+2α3,β3=3α1+2α2+α3也可以做Ax =0的基础解系
设X0是非齐次线性方程组AX=b的一个解向量,α1,α2,…αn-r是对应齐次线性方程组AX=0的一个基础解系,试证(1)X0,α1,α2,…,αn-r线性无关(2)X0,X0+α1,X0+α2,…,X0+αn-r是方程组AX=b的n-r+1个线性无关的