设函数f(x)=lnx的定义域为(t,+∞),且t>0.对于任意a,b,c∈(t,+∞),若a,b,c是一个直角三角形的三边长,且f(a),f(b),f(c)也能成为某个三角形的三边长,那么t的最小值是( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:55:52

设函数f(x)=lnx的定义域为(t,+∞),且t>0.对于任意a,b,c∈(t,+∞),若a,b,c是一个直角三角形的三边长,且f(a),f(b),f(c)也能成为某个三角形的三边长,那么t的最小值是( )
设函数f(x)=lnx的定义域为(t,+∞),且t>0.对于任意a,b,c∈(t,+∞),若a,b,c是一个直角三角形的三边长,且f(a),f(b),f(c)也能成为某个三角形的三边长,那么t的最小值是( )

设函数f(x)=lnx的定义域为(t,+∞),且t>0.对于任意a,b,c∈(t,+∞),若a,b,c是一个直角三角形的三边长,且f(a),f(b),f(c)也能成为某个三角形的三边长,那么t的最小值是( )
不防令a1得t>1,
根据直角三角形性质,有c=b/cosA,A∈(0,π/4),
根据任意三角形性质有lna+lnb>lnc,即ab>c,代入上式得ab>b/cosA,A∈(0,π/4),
化为a>1/cosA,由A∈(0,π/4)可知√2/2√2,所以t的最小值是√2.

a,b,c满足a^2+b^2 = c^2
f(a) + f(b) = ln(ab)
f(c) = ln(c)
如果ab=c
a^2 + b^2 + 2ab = c^2 +2c
(a+b)^2 = c(c+2)
如果a=b, c=根号(2)a
4a^2 = 2a^2 +2根号(2)a
a = 根号(2)
为t最小值如果ab=c...

全部展开

a,b,c满足a^2+b^2 = c^2
f(a) + f(b) = ln(ab)
f(c) = ln(c)
如果ab=c
a^2 + b^2 + 2ab = c^2 +2c
(a+b)^2 = c(c+2)
如果a=b, c=根号(2)a
4a^2 = 2a^2 +2根号(2)a
a = 根号(2)
为t最小值

收起

函数f(x)=lnx定义域为 设函数f(x)=p(x-1/x)-2lnx,若F(X)在其定义域为单调函数求P的取值范围 设函数f(u)的定义域为[0,1],求f(lnx)的定义域 函数f(x)的定义域为[1,2],则函数f(lnx)的定义域为 设f(X)的定义域为[0.1]则f(lnx)的定义域为? 设函数f(x)=lnx+ln(2-x)+1求函数的定义域和单调区间啊 填空题函数f(x)=lnx/根号2-x的二次方的定义域为 函数f(x)=√(2-x)+lnx的定义域为 已知函数f(x)=(xΛ2+1)lnx-2x+2的定义域为[1,正无穷),已知函数f(x)=(xΛ2+1)lnx-2x+2的定义域为[1,正无穷).(一)证明函数y=f(x)在其定义域上单调递增.(二)设0 设函数f(x)的定义域为0= 设函数f(x)=lnx的定义域为(t,+∞),且t>0.对于任意a,b,c∈(t,+∞),若a,b,c是一个直角三角形的三边长,且f(a),f(b),f(c)也能成为某个三角形的三边长,那么t的最小值是( ) 设函数f(x)=lnx的定义域为(t,+∞),且t>0.对于任意a,b,c∈(t,+∞),若a,b,c是一个直角三角形的三边长,且f(a),f(b),f(c)也能成为某个三角形的三边长,那么t的最小值是( ) 函数f(x)=(√9-x^2)/ln(x+2)则f(lnx) 的定义域为 设函数f(x)的定义域为[0.1],则函数f(x*2)的定义域为? 设F(x)=f(t+lnx)dt的上限为2,下限为1的定积分,这个函数应该怎样理解 复合函数定义域求法究竟怎么理解为什么有的是能看做整体,有的指的就是X?1.设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为解析是u∈(0,1)所以0<f(lnx)<1所以1<x<e即x∈(1,e)2.函数f(x+1) 设函数f(x)的定义域为R,当x 设f(x)的一个原函数为lnx,求f(x)f'(x)dx