证明勾股定理的推广,若欧式空间中向量a1,a2...am两两正交,则||a1+a2+...+am||^2=||a1||^2+...+||am||^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:59:03
证明勾股定理的推广,若欧式空间中向量a1,a2...am两两正交,则||a1+a2+...+am||^2=||a1||^2+...+||am||^2
证明勾股定理的推广,若欧式空间中向量a1,a2...am两两正交,则||a1+a2+...+am||^2=||a1||^2+...+||am||^2
证明勾股定理的推广,若欧式空间中向量a1,a2...am两两正交,则||a1+a2+...+am||^2=||a1||^2+...+||am||^2
证明勾股定理的推广,若欧式空间中向量a1,a2...am两两正交,则||a1+a2+...+am||^2=||a1||^2+...+||am||^2
设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)】(a,ai)^2≤a的模长的平方
试证明在n维欧式空间v中,两两成钝角的非零向量不多于n+1个
证明:在n维欧式空间中,两两成钝角的非零向量不多于N+1个谢谢...
设a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为.1 -1 2-1 2 -12 -1 6(1)令γ=a1+a2,证明γ是一个单位向量(2)若β=a1+a2+ka3与γ正交,求k的值
在n维欧式空间中,不存在n+1个两两正交的非零向量,为什么?
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则b1=b2
证明:欧式空间中的非零向量α,β正交的充要条件是:|α+β|=|α-β|
设a1 a2.a(n-1)是欧式空间R的n次中一正交向量组,b1 b2属于R的n次设a1 a2.a(n-1)是欧式空间R的n次中一正交向量组,b1 b2属于R的n次,且b1与每个ai内积等于0,b2与每个ai的内积等于0,证明b1 b2线性无关.
设V是一个n维欧式空间,a1,a2,.,am是V中的正交向量组,令:W={α | (a,ai)=0,α∈ V ,i=1,2,...m}证明:W是V的一个子空间证明:W的正交补 =L(a1,12,...an)
如何证明“欧式空间中的基本列必是收敛的”
欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,试解释并构造以上过程.
在欧式空间R4中,求三个向量a1,a2,a3所生成的子空间的一个标准正交基a1=(1,0,1,1)T,a2=(2,1,0,-3)T,a3=(1,-1,1,-1)T老师,这题是想考施密特正交化原理吧.但是我想问1)为什么三个线性无关向量可以生成一
求教一个关于拓扑的题目!证明:n维欧式空间与1维欧式空间不同胚
在欧式空间V中,对任意两个向量x,y,证明:|x+y|^2+|x-y|^2=2|x|^2+2|y|^2
设V是一个n维欧式空间,a不等于0为V中一固定向量,证明W={x/(x,a)=0,x属于v}
a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为...a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为2 -1 2-1 2 -12 -1 2设向量t=a1+a2,求向量t的长度|t|=?