如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:01:36

如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识
如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识

如何证明 不等式√((a^2+b^2)/2)≥|(a-b)/2| 请介绍有关知识
首先有
平方平均数>=代数平均数
即((a^2+b^2)/2)^(1/2)>=(|a|+|b|)/2
由绝对值不等式,
|a|+|b|>=|a-b|
则((a^2+b^2)/2)^(1/2)>=(|a|+|b|)/2>=|a-b|/2
第一个不等式两边平方可直接证得