如图所示,质量分别为M1=0.99kg和M2=1kg的木块静置在光滑水平地面上如图所示,质量分别为M1=0.99kg和M2=1kg的木块静置在光滑水平地面上,两木块间夹一轻质弹簧,一粒质量m=10g的子弹以v0=100m/s的速度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 18:21:30
如图所示,质量分别为M1=0.99kg和M2=1kg的木块静置在光滑水平地面上如图所示,质量分别为M1=0.99kg和M2=1kg的木块静置在光滑水平地面上,两木块间夹一轻质弹簧,一粒质量m=10g的子弹以v0=100m/s的速度
如图所示,质量分别为M1=0.99kg和M2=1kg的木块静置在光滑水平地面上
如图所示,质量分别为M1=0.99kg和M2=1kg的木块静置在光滑水平地面上,两木块间夹一轻质弹簧,一粒质量m=10g的子弹以v0=100m/s的速度打入木块M1中,当子弹在木块M1中相对静止的瞬间,求,1,木块M1的速度大小.2,弹簧被压缩到最短瞬间木块M2的速度.3,弹簧的最大弹性势能.
如图所示,质量分别为M1=0.99kg和M2=1kg的木块静置在光滑水平地面上如图所示,质量分别为M1=0.99kg和M2=1kg的木块静置在光滑水平地面上,两木块间夹一轻质弹簧,一粒质量m=10g的子弹以v0=100m/s的速度
假设子弹向右打入,子弹打入M1 的瞬间子弹和M1系统的动量守恒,相当于发生一次完全非弹性碰撞:
mv0=(M1+m)v1,求得v1=1m/s,
接下来的过程是:子弹和M1由于获得向右的速度会产生运动,但是由于弹簧的存在,他只能减速,但不是匀减速运动,是一个加速度逐渐增大的减速过程,而M2由于在M1和弹簧的作用下会向右加速,是初速度为0的加速度逐渐增加的加速运动,由于M1和M2之间速度不等而存在相对运动,因此弹簧会逐渐被压缩,直到两者的速度相等时,弹簧被压缩到最短,此过程动量也守恒,列出方程
(M1+m)v1=(M1+M2)V2,可求得v2=0.5m/s,根据能量守恒,M1M2系统的动能最大损失就转化为弹簧的最大弹性势能,列出方程:E弹=1/2M1v1^2-1/2(M1+m+M2)v2^2.
1.动量守恒定律,对子弹、M1:
m v0 = (m+M1)V共1 M1的速度大小V1=V共1=1m/s
2.弹簧被压缩到最短过程,动量守恒:
(m+M1)V共1=(m+M1+M2) V共2 M2的速度V2=V共2=0.5m/s
3.弹簧被压缩到最短过程,机械能守恒:
1/2(m+M1)V共1^2=1/2(m+M1+M2) V共2...
全部展开
1.动量守恒定律,对子弹、M1:
m v0 = (m+M1)V共1 M1的速度大小V1=V共1=1m/s
2.弹簧被压缩到最短过程,动量守恒:
(m+M1)V共1=(m+M1+M2) V共2 M2的速度V2=V共2=0.5m/s
3.弹簧被压缩到最短过程,机械能守恒:
1/2(m+M1)V共1^2=1/2(m+M1+M2) V共2^2+Ep
,弹簧的最大弹性势能Ep=0.25J
收起
先木块M1和子弹组成的系统的动量守恒。所以mV0=(M1+m)V1得碰撞后瞬间相对静止时的木块M1速度V1=1m/s。之后两个木块和子弹和弹簧组成的系统的动量守恒。mV0=(M1+M2+m)V2.
得V2=0.5m/s。此时弹簧压缩最短,弹性势能最大。设最大的弹性势能为Ep。那么Ep=1/2(M1+m)V1²-1/2(M1+M2+m)V2²=0.25J....
全部展开
先木块M1和子弹组成的系统的动量守恒。所以mV0=(M1+m)V1得碰撞后瞬间相对静止时的木块M1速度V1=1m/s。之后两个木块和子弹和弹簧组成的系统的动量守恒。mV0=(M1+M2+m)V2.
得V2=0.5m/s。此时弹簧压缩最短,弹性势能最大。设最大的弹性势能为Ep。那么Ep=1/2(M1+m)V1²-1/2(M1+M2+m)V2²=0.25J.
收起
假设子弹向右打入,子弹打入M1 的瞬间子弹和M1系统的动量守恒,相当于发生一次完全非弹性碰撞:
mv0=(M1+m)v1, 求得v1=1m/s,
接下来的过程是:子弹和M1由于获得向右的速度会产生运动,但是由于弹簧的存在,他只能减速,但不是匀减速运动,是一个加速度逐渐增大的减速过程,而M2由于在M1和弹簧的作用下会向右加速,是初速度为0的加速度逐渐增加的加速运动,由于M1和M2之...
全部展开
假设子弹向右打入,子弹打入M1 的瞬间子弹和M1系统的动量守恒,相当于发生一次完全非弹性碰撞:
mv0=(M1+m)v1, 求得v1=1m/s,
接下来的过程是:子弹和M1由于获得向右的速度会产生运动,但是由于弹簧的存在,他只能减速,但不是匀减速运动,是一个加速度逐渐增大的减速过程,而M2由于在M1和弹簧的作用下会向右加速,是初速度为0的加速度逐渐增加的加速运动,由于M1和M2之间速度不等而存在相对运动,因此弹簧会逐渐被压缩,直到两者的速度相等时,弹簧被压缩到最短,此过程动量也守恒,列出方程
(M1+m)v1=(M1+M2)V2, 可求得v2=0.5m/s, 根据能量守恒,M1M2系统的动能最大损失就转化为弹簧的最大弹性势能,列出方程:E弹=1/2M1v1^2-1/2(M1+m+M2)v2^2。
收起