关于概率分布 比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如投硬币,关于概率分布比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:29:50

关于概率分布 比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如投硬币,关于概率分布比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如
关于概率分布 比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如投硬币,
关于概率分布
比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.
1,比如投硬币,连续3次正或反的概率是0.5*0.5*0.5=0.125.这个我明白,就是1000盘出现3连的次数是125次.
2,我发现经常把随机事件的实验次数定为n(就是无限次)然后告诉我们因为n无限所以硬币可以100次连续正或连续负.都很正常.
3,按照公式硬币10次连续出正或反
的概率是万分之一.
我想问的是,在实验样本有限的情况下,我们把n=1万次,那么出现百万分之一,千万分之一,亿万分之一的概率是多少?(比如连续20次正的概率是百万分之一)
(因为n=无限,出多少次小概率事件都可以理解,但在n是具体数字的情况下难道千万分之一的事也可以无限发生在里面吗)

关于概率分布 比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如投硬币,关于概率分布比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如
我是一位数学老师,我从您的描述中发现了您对“概率”的概念的认识有偏差.
概率:用来描述事件发生可能性的大小的一个量.
(就好比是我们的成绩,考出来只是个数字,但是一定程度可以用来衡量一个人的学业水平.)
注意几点:
(1)一定条件下,对于某个具体事件,它的发生概率是一个定值.
(2)概率不是“比例”,也不是“频率”.
我们通过一个例子来阐述:单次抛硬币正面朝上概率为0.5,所以丢100次就有50次朝上?
答:错!
实际操作中我们发现不一定是50次.如果丢的次数足够多,正面朝上的次数基本是在总次数的一半左右徘徊,也就是正面朝上的“频率”趋近于0.5.我们把这个频率所趋近的稳定值称为概率,作用是描述事件发生的可能性大小.比如丢100次硬币全都正面朝上也是有可能的,它的概率是0.5的100次方,极小的一个数字,日常生活中我们说“等同于0”,说明发生可能性极度的小,但不代表不可能发生.
您的阐述中,有把概率当成“频率”、“比率”的意思,这是造成困扰的原因之一.
每种概型都有他的适应范围和条件,举例子:
(1)基本事件数有限,且每个基本事件等可能出现,是古典概型
(2)基本事件数无限,且每个基本事件等可能出现,是几何概型
(3)当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np.通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算
这说明在条件变化,特别是有限与无限的转化的时候,可能概率模型会变哦.

关于概率分布 比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如投硬币,关于概率分布比如正态分布,二项分布,柏松分布…因为太多数学公式我一个都没看懂.1,比如 关于概率论的问题~求各种分布的常见应用比如指数分布常用于等待时间的问题,那么其他的呢?希望可以写下 两点分布,二项分布.泊松分布,指数分布,正态分布,均匀分布的常见应用 两点分布,二项分布,超几何分布,正态分布的区别 二项分布和t分布的极限分布都是正态分布? 概率分布是正态分布么? 排列组合、概率、分布有什么联系?我蒙了.排列、组合、概率、统计、分布、互斥事件、相互独立事件、对立事件、几何分布、超几何分布、正态分布、二项分布……太多概念啦,我搞蒙了.它 求概率,关于正态分布 正态分布是抽样分布还是概率分布? 做一个PIZZA的时间是概率分布(柏松分布,负二项分布,二项分布,几何分布)的那一种P.S.请说下原因 二项分布和正态分布的区分二项分布和正态分布各自的区别是什么?这两种分布的图像又有什么特点? 求概率论里的几种分布公式,正态分布,指数分布,泊松分布,二项分布 二项分布、几何分布、泊松分布、正态分布在生活中的实际例子. 泊松分布能否看作二项分布特例?二项分布的极限分布是泊松分布、泊松分布的极限分布是正态分布正确不? 关于正态分布的概率题 如何区分超几何分布,条件概率和二项分布? 正态分布,二项分布,泊松分布,有何区别?三者有何联系? 二项分布、泊松分布与正态分布三者之间的区别与联系 证明,二项分布、泊松分布,正态分布的可加性质.可详细证明其中之一.