三道证明题: 1.已知:在Rt△ABC中,∠C=900,CD⊥AB于D,CD= 根号2,BD=1.求:AD,BC,AC的长.2.AD是△ABC的高,DE⊥AC于E,DF⊥AB于F,求证:∠AEF=∠B.3.如图,四边形ABCD中,∠A=∠BCD=90°过C作对角线BD的垂线交BD、AD于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 22:44:23

三道证明题: 1.已知:在Rt△ABC中,∠C=900,CD⊥AB于D,CD= 根号2,BD=1.求:AD,BC,AC的长.2.AD是△ABC的高,DE⊥AC于E,DF⊥AB于F,求证:∠AEF=∠B.3.如图,四边形ABCD中,∠A=∠BCD=90°过C作对角线BD的垂线交BD、AD于
三道证明题:

 1.已知:在Rt△ABC中,∠C=900,CD⊥AB于D,CD= 根号2,BD=1.求:AD,BC,AC的长.

2.AD是△ABC的高,DE⊥AC于E,DF⊥AB于F,求证:∠AEF=∠B.

3.如图,四边形ABCD中,∠A=∠BCD=90°过C作对角线BD的垂线交BD、AD于点E、F. 求证:CD²=DF·DA.

三道证明题: 1.已知:在Rt△ABC中,∠C=900,CD⊥AB于D,CD= 根号2,BD=1.求:AD,BC,AC的长.2.AD是△ABC的高,DE⊥AC于E,DF⊥AB于F,求证:∠AEF=∠B.3.如图,四边形ABCD中,∠A=∠BCD=90°过C作对角线BD的垂线交BD、AD于
1.∵∠BDC=90°
∴BC=√(CD²+BD²)=√3
∵∠ACB=∠BDC=90° ∠B=∠B
∴⊿BCD∽⊿BAC
∴BC/BA=CD/AC=BD/BC
√3/BA=√2/AC=1/√3
∴AB=3 AC=√6
∴AD=AB-BD=3-1=2
BC=√3,AD=2,AC=√6
2.证明:
∵∠AED=∠AFD=90°,
∴A、E、D、F四点共圆,
∴∠AEF=∠ADF,
又∵∠ADB=∠AFD=Rt∠,∠BAD=∠DAF
∴△ADB∽△AFD
∴∠B=∠ADF
∴∠AEF=∠B
3.证明:
证明:
∵∠BCD=90°,CE⊥BD
∴∠BCD=∠CED
∵∠BDC=∠CDE
∴△BCD∽△CED
∴CD/DE=BD/CD
∴CD²=DE*DB
∵∠A=90°,CE⊥BD
∴∠A=∠DEF
∵∠BDA=∠FDE
∴△ABD∽△EFD
∴DA/DE=DB/DF
∴DE*DB=DF*DA
∴CD²=DF*DA
如果本题有什么不明白可以追问,