已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG2.将图1中△BEF绕B点逆时针旋转45°,如图2所示,取DF中点G,连接EG,CG,问1中的结论是否仍然成立?请证明3.将图1中

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:37:48

已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG2.将图1中△BEF绕B点逆时针旋转45°,如图2所示,取DF中点G,连接EG,CG,问1中的结论是否仍然成立?请证明3.将图1中
已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG
2.将图1中△BEF绕B点逆时针旋转45°,如图2所示,取DF中点G,连接EG,CG,问1中的结论是否仍然成立?请证明
3.将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应线段,问1中结论是否成立,EG是否垂直于CG,请证明

已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG2.将图1中△BEF绕B点逆时针旋转45°,如图2所示,取DF中点G,连接EG,CG,问1中的结论是否仍然成立?请证明3.将图1中
分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.还知道EG⊥CG.
 
(1)证明:在Rt△FCD中,∵G为DF的中点,
∴CG=1/2FD,
同理,在Rt△DEF中,
EG=1/2FD,
∴CG=EG.
 
(1)中结论仍然成立,即EG=CG.
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,
∵AD=CD,∠ADG=∠CDG,DG=DG,
∴△DAG≌△DCG,
∴AG=CG;
在△DMG与△FNG中,
∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴△DMG≌△FNG,
∴MG=NG;
在矩形AENM中,AM=EN,
在△AMG与△ENG中,
∵AM=EN,∠AMG=∠ENG,MG=NG,
∴△AMG≌△ENG,
∴AG=EG,
∴EG=CG.
证法二:延长CG至M,使MG=CG,
连接MF,ME,EC,
在△DCG与△FMG中,
∵FG=DG,∠MGF=∠CGD,MG=CG,
∴△DCG≌△FMG.
∴MF=CD,∠FMG=∠DCG,
∴MF∥CD∥AB,
∴EF⊥MF.
在Rt△MFE与Rt△CBE中,
∵MF=CB,EF=BE,
∴△MFE≌△CBE
∴∠MEF=∠CEB.
∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,
∴△MEC为直角三角形.
∵MG=CG,
∴EG=1/2MC,
∴EG=CG.
 
(1)中的结论仍然成立.理由如下:
过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.
由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,
又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,
∴△MEC是等腰直角三角形,
∵G为CM中点,
∴EG=CG,EG⊥CG.
 
点评:本题利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质.
 

如图在正方形abcd中,e为对角线bd上一点如图 ,已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG求 证:eg⊥cg 已知 如图 在正方形ABCD中,对角线AC,BD相交于点O,E是AB上任意一点,EG垂直AC,已知 如图 在正方形ABCD中,对角线AC,BD相交于点O,E是AB上任意一点,EG垂直AC,EF垂直BD垂足分别为G,F求证 EG+EF=二分之一AC 在正方形ABCD中对角线AC,BD交于O,E是对角线BD上一点,且BE=BC,则∠ACE的度数为多 已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:E 已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:E 已知E在正方形ABCD中,对角线bd上的一点,EF⊥BC EG⊥CD,垂足分别为F,G若正方形ABCD的周长为30则四边形efcg的周长是多少 已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.请求证:EG=CG且EG垂直CG 已知正方形ABCD中,E为对角线BD上的一点,过E点作EF垂直BD交BC于F,连接DF,G为DF中点,连接EG,CG 已知正方形ABCD中,E为对角线BD上一点,过E点作EF垂直BD交BC于F已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG2.将图1中△BEF绕B点逆时针旋转45°,如图2所示,取DF 已知正方形ABCD中,E为对角线BD上一点,过E点作EF垂直BD交BC于F已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG1.求证:EG=CG2.将图1中△BEF绕B点逆时针旋转45°,如 4.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)4.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求 已知正方形ABCD中,E为对角线BD上一点,过点E作EF垂直BD交BC于点F,连接DF,G为DF的中点,连结EG、CG.求证:...已知正方形ABCD中,E为对角线BD上一点,过点E作EF垂直BD交BC于点F,连接DF,G为DF的中点,连结EG、C 已知,如图正方形ABCD中,E是对角线BD上的一点,过E作EF垂直BC,EC垂直CD,垂足为E G求证AE=FG 1,正方形ABCD中,对角线AC,BD交于O,AE平分∠BAC交BD于E,若正方形ABCD的周长为16CM,则DE等于多少?2,已知:菱形ABCD中,E在BC上,AE 交BD于M ,若AB=AE,∠BAE=1/2EAD,求证:BE=AM.第二题不用回答了~ 已知:如图,在正方形ABCD中,对角线AC、BD相交于点O,E是AB上任意一点,EG⊥AC,EF⊥BD,垂足分别为G、F.求证:EG+EF=1/2AC 在正方形abcd中,g为对角线 BD上一点,GE垂直DC,垂足为E,GF垂直BC,垂直为F,求证:EF垂直AG 正方形ABCD中,E为AB上一点,AE=7,BE=5,在对角线BD上找一点P,使PE+PA最短 已知,如图,E是正方形ABCD中对角线BD上的一点,EF⊥BC,EG⊥CD,求证AE⊥FG