若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e^x则有A.f(2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:32:56

若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e^x则有A.f(2)
若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e^x
则有
A.f(2)

若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e^x则有A.f(2)
由f(x)+g(x)=e^x (1)
可得:f(-x)+g(-x)=e^(-x) (2)
又因为函数f(x),g(x)分别是R上的奇函数、偶函数,可得f(-x)=-f(x) (3)
g(-x)=g(x) (4)
把(3)、(4)代入(2),得:-f(x)+g(x)=e^(-x) (5)
联立(1)、(5),可得:2f(x)=e^x-e^(-x)
2g(x)=e^x+e^(-x)
则:
2f(2)=e^2-e^(-2)
2f(3)=e^3-e^(-3)
2g(-3)=e^(-3)+e^(-(-3))
显然有f(2)

选择A
解答如下:
函数f(x),g(x)分别是R上的奇函数、偶函数
又f(x)+g(x)=e^x…………………………①
则g(x)-f(x)=e^-x…………………②
联立①②解得:
g(x)=1/2(e^x+e^-x)
f(x)=1/2(e^x-e^-x)
g(x)在(0,+∞)是增函数
f(x)在R是增函数,f(3)>f...

全部展开

选择A
解答如下:
函数f(x),g(x)分别是R上的奇函数、偶函数
又f(x)+g(x)=e^x…………………………①
则g(x)-f(x)=e^-x…………………②
联立①②解得:
g(x)=1/2(e^x+e^-x)
f(x)=1/2(e^x-e^-x)
g(x)在(0,+∞)是增函数
f(x)在R是增函数,f(3)>f(2)
因为g(-3)=g(3)
则:g(3)-f(3)=e^-3>0

收起

1.已知函数f(x)=2sin^2 xcos^2 x,x∈R,则f(x)是最小正周期为___的___(奇/偶)函数2.若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=1/(e^x),则有A.f'(x)+g(x)=0 B.f'(x)-g(x)=0 C.f'(x)+g'(x)=0 D.f(x)-g'(x)=0 若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e^x则有A.f(2) 若函数f(x)g(x)分别是在R上的奇函数偶函数,且满足f(x)-g(x)=ex,则有:A.g(0) f(x),g(x)分别是定义在R上的奇,偶函数x0,g(-3)=0,不等式f(x)g(x)0.∴ G(x)在(-∞,0)上是增函数且 G(-3)=0.又∵f(x)为奇函数,g(x)为偶函数,∴ (x)=f(x)g(x)为奇函数.∴ G(x)在(0,+∞)上也是增函数且 G(3)=0.当x 已知f(x),g(x)分别是(-a,a)上的奇函数和偶函数,求证:f(x)*g(x)是(-a,a)上的奇函 几道高中数学题(好的追分)1.若函数f(x) g(x)分别是R上的及函数、偶函数,且满足f(x)+g(x)=e^x,则有A.f(e) f(x),g(x)分别是定义在R上的奇,偶函数x0,g(-3)=0,不等式f(x)g(x)0.∴ (x)在(-∞,0)上是增函数且 (-3)=0.又∵f(x)为奇函数,g(x)为偶函数,∴ (x)=f(x)g(x)为奇函数.∴ (x)在(0,+∞)上也是增函数且 (3)=0.当x 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e的x次方,则有f(2),f(3),g(0)的大小关系是? 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e^x,比较g(0),f(2),f(3)的大小要有过程 谢! 若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e^x,比较f(2)f(3)g(0)的大小 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=e^x,比较g(-3),f(3),f(e)的大小 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=e^x,比较g(-3),f(3),f(e)的大小如题 若函数F(X),G(X)分别是R上的奇函数,偶函数,且满足F(X)-G(X)=3^x则F(2),G(0),F(3)的大小 x若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e ,比较f(2),f(3),g(0)的大小 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e^x,试比较f(2),f(3),g(0)的大小 设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,都不等于0.当x>0时,f'(x)g(x) 设函数f(x)和g(x)分别是R上的偶函数和奇函数,为什么│f(x)│+g(x)的奇偶性不确定 若函数f(x),g(x)分别是R上的奇函数,偶函数且满足f(x)-g(x)=2的x次方 则有( )A.g(0)