已知x,y>0,求证:根号下(x^2+y^2)+2/(1/x+1/y)>(x+y)/2+根号下(xy)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:08:15
已知x,y>0,求证:根号下(x^2+y^2)+2/(1/x+1/y)>(x+y)/2+根号下(xy)
已知x,y>0,求证:根号下(x^2+y^2)+2/(1/x+1/y)>(x+y)/2+根号下(xy)
已知x,y>0,求证:根号下(x^2+y^2)+2/(1/x+1/y)>(x+y)/2+根号下(xy)
√[(x²+y²)/2]+2/(1/x+1/y)≥(x+y)/2+√﹙xy﹚
√[(x²+y²)/2]-√﹙xy﹚≥(x+y)/2-2/(1/x+1/y)
﹛√[(x²+y²)/2]﹜²-[√﹙xy﹚]²/﹛√[(x²+y²)/2]+√﹙xy﹚﹜≥(x+y)/2-2xy/(x+y)
[﹙x-y)²/2]/﹛√[(x²+y²)/2]+√﹙xy﹚﹜≥﹙x-y)²/[2﹙x+y﹚]
√[(x²+y²)/2]+√﹙xy﹚≤x+y(当x≠y时﹚
(x²+y²)/2+xy+2√[(x²+y²)/2]√﹙xy﹚≤x²+y²+2xy
x²+y²+2xy+4√[(x²+y²)/2]√﹙xy﹚≤2x²+2y²+4xy
2√(x²+y²)√﹙2xy﹚≤x²+y²+2xy
此式显然成立,且以上步步可逆
∴√(x²+y²)+2/(1/x+1/y)>√[(x²+y²)/2]+2/(1/x+1/y)≥(x+y)/2+√﹙xy﹚(当x≠y时﹚
当x=y时,√(x²+y²)+2/(1/x+1/y)=√2x+x,
(x+y)/2+√﹙xy﹚=x+x
∴√(x²+y²)+2/(1/x+1/y)>(x+y)/2+√﹙xy﹚
故√(x²+y²)+2/(1/x+1/y)>(x+y)/2+√﹙xy﹚
已知我x>=0,y>=0,求证:1/2(x+y)^2+1/4(x+y)>=x根号下y+y根号下x
已知x,y>0,求证:根号下(x^2+y^2)+2/(1/x+1/y)>(x+y)/2+根号下(xy)
设x>0,y>0,求证:1/2(x +y)2 +1/4(x +y)≥根号下xy(根号下x+根号下y)
已知x>0,y>0且x+y=1,求证根号(x+1/2)+根号(y+1/2)
已知根号下x^2-4x+4 + 根号下y^2+6y+9=0,求y^x
已知x+y-2根号下x-4根号下y+5=0,求实数x,y的值
已知X,Y为正实数,且X+Y=1,求证:根号下(X+1/2)+根号下(Y+1/2)小于等于2
已知x*2+y*2-4x+5=0求根号x+y除以根号下x-y
1.已知:a,b是正数,求证:a+b≥2根号下ab2.已知x=2,y=二分之一,求根号x-根号下y分之根号x+根号下y - 根号下x+根号下y分之根号x-根号下y.
已知3x^2+2y^2≤6,求证:2x+y≤根号下11
已知xy是正实数,且xy-x-y=1,求证x+y》2+2根号下2
已知x>0,y>0,且xy-(x+y)=1,求证x+y>=2(根号2+1)
已知x>y>0,xy=1,求证(x^2+y^2)/(x-y)≥2根号2
已知x的平方+y的平方-4x-2y+5=0,求根号下x+y(y不在根号下)/根号下x-y(y不在根号下)
已知根号下X的平方-4+根号下2X+Y=0,求X-Y
已知正实数x y满足x-根号xy-2y=0求 x+3根号xy+2y/2x-2根号下xy-y
已知x²+y²+4x+2y+5=0,求根号下(y/x)+根号下(x/y)的值
已知根号下2-(x的绝对值)+根号下1-(y的绝对值)=0,且(x-y的绝对值)=y-x,求x+y值