已知动圆M与直线l:x-2=0相切,且与定圆(x+3)^2+y^2=1相外切,求动圆圆心M的轨迹方程求详解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:28:38
已知动圆M与直线l:x-2=0相切,且与定圆(x+3)^2+y^2=1相外切,求动圆圆心M的轨迹方程求详解
已知动圆M与直线l:x-2=0相切,且与定圆(x+3)^2+y^2=1相外切,求动圆圆心M的轨迹方程
求详解
已知动圆M与直线l:x-2=0相切,且与定圆(x+3)^2+y^2=1相外切,求动圆圆心M的轨迹方程求详解
定圆C:(x+3)²+y²=1,半径为1,圆心C(-3,0)
由题意,动圆M与直线x=2相切,且与定圆C:(x+3)²+y²=1外切
∴ 动点M到C(-3,0)的距离 减1等于动点M到直线x=2的距离
方法一:
∴动点M到C(-3,0)的距离与到直线x=3的距离相等
由抛物线的定义知,
点M的轨迹是以C(-3,0)为焦点,直线x=3为准线的抛物线
∴ 动点M的轨迹方程为y²=-12x
方法二:(如果还没有学抛物线)
设M(x,y)
则画个图,容易知道x
z
依据动圆与定直线、定圆的位置关系有:M到定直线的距离即动圆的半径,M到定圆圆心的距离即动圆半径与定圆半径之和
易知定圆圆心为(-3,0),半径为1
令动圆圆心M为(x,y)(显然x≤0)
则M到定直线的距离即动圆的半径为Rm=|x-2|=2-x
令定圆圆心为N
由两点间的距离公式有MN=√[(x+3)^2+y^2]
所以√[(x+3)^2+y^2]=...
全部展开
依据动圆与定直线、定圆的位置关系有:M到定直线的距离即动圆的半径,M到定圆圆心的距离即动圆半径与定圆半径之和
易知定圆圆心为(-3,0),半径为1
令动圆圆心M为(x,y)(显然x≤0)
则M到定直线的距离即动圆的半径为Rm=|x-2|=2-x
令定圆圆心为N
由两点间的距离公式有MN=√[(x+3)^2+y^2]
所以√[(x+3)^2+y^2]=(2-x)+1
整理得y^2=-12x
即动圆圆心的轨迹为抛物线y^2=-12x
收起