四棱锥P-ABCD的底面为菱形∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC的如图,四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. .在线段PC上是否存在一点M,使PC⊥MBD成立?若存

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:25:19

四棱锥P-ABCD的底面为菱形∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC的如图,四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. .在线段PC上是否存在一点M,使PC⊥MBD成立?若存
四棱锥P-ABCD的底面为菱形∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC的
如图,四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点.
.在线段PC上是否存在一点M,使PC⊥MBD成立?若存在求出MC的长

四棱锥P-ABCD的底面为菱形∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC的如图,四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. .在线段PC上是否存在一点M,使PC⊥MBD成立?若存
存在.
在平面PCD内,过D作DM⊥PC于M,点M即为所求.
MC=sqrt(6)/4
【sqrt(6)表示根号6】

已知四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,E为BC中点,求证:AE⊥PD. 四棱锥p-ABCD中底面ABCD为菱形,∠ABC=60,PA⊥面ABCD,E为BC中点,证AE⊥PD 四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. 求三棱锥P-BDC的体积 四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号6,E为PC的中 已知四棱锥P-ABCD它的底面是边长为a的菱形,∠ABC=120°,pc垂直于底面ABCD,又PC=a,E为PA的中点.已知四棱锥P-ABCD它的底面是边长为a的菱形,∠ABC=120°,pc垂直于底面ABCD,又PC=a,E为PA的中点。(1)证面E 四棱锥P-ABCD的底面为菱形∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC的如图,四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC中点. .在线段PC上是否存在一点M,使PC⊥MBD成立?若存 如图,在四棱锥o-abcd中,底面abcd是边长为一的菱形,abc=45 如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BD,PA的中点,PA=AB=2 如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)AE⊥PD判定AE与PD是否垂直, 底面为菱形的四棱锥P—ABCD,∠ABC=60 ,PA=AC=a,PB=PD=(√2)a,E为PD中点证1)PA⊥ABCD 2)PB‖面EAC 四棱锥P-ABCD的底面是边长为2的菱形,∠ABC=60,侧棱PA垂直于平面ABCDPC与平面ABCD所成角的大小为arctan2 M为PA中点1 求四棱锥P-ABCD的体积2 求异面直线BM与PC所成角的大小 结果用反三角表示 在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=60°,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=60°OA⊥底面ABCD,OA=2N为AD中点.求点B到面DNC的距离. 四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,侧面PAD是边长为2的等边三角形,且侧面PAD,见补四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,侧面PAD是边长为2的等边三角形,且侧面PAD⊥底面AB 空间几何:如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°(1)求证:AD⊥PB (2) 四棱锥P-ABCD底面边长为2菱形,∠ABC=60°,PA=PC=2,PB=PD 点M是PD的中点,求异面直线AD 与CM所成角余弦值 在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点 求证三角形PBC是直角三角形 如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.求二面角A-BC-P的大小. 已知四棱锥P-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60度,E,F分别是BC,PC的中点,证明AF垂直PD