f(x)=2sin(2x+π/6),求g(x)=f(x-π/12)-f(x+π/12)的单调递增区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 16:26:38
f(x)=2sin(2x+π/6),求g(x)=f(x-π/12)-f(x+π/12)的单调递增区间
f(x)=2sin(2x+π/6),求g(x)=f(x-π/12)-f(x+π/12)的单调递增区间
f(x)=2sin(2x+π/6),求g(x)=f(x-π/12)-f(x+π/12)的单调递增区间
g(x)=f(x-π/12)-f(x+π/12)
=2sin(2x)-2sin(2x+π/3)
=2[sin(2x)-sin(2x+π/3)]
=2sin(2x-π/3)
单调递增区间由
2kπ-π/2≤2x-π/3≤2kπ+π/2
得kπ-π/12≤x≤kπ+5π/12
f(x)=2sin(2x+π/6)
g(x)=f(x-π/12)-f(x+π/12)
=2sin(2x-π/6+π/6)-2sin(2x+π/6+π/6)
=2sin2x-2sin(2x+π/3)
=2sin2x-2[sin2x*(1/2)+cos2x*(√3/2)]
=sin2x-√3cos2x
=2sin(2x-π/3)
求单...
全部展开
f(x)=2sin(2x+π/6)
g(x)=f(x-π/12)-f(x+π/12)
=2sin(2x-π/6+π/6)-2sin(2x+π/6+π/6)
=2sin2x-2sin(2x+π/3)
=2sin2x-2[sin2x*(1/2)+cos2x*(√3/2)]
=sin2x-√3cos2x
=2sin(2x-π/3)
求单调递增区间:
令2kπ-π/2<2x-π/3<2kπ+π/2,k∈Z
kπ-π/12<x<kπ+5π/12,k∈Z所以单调递增区间是(kπ-π/12,kπ+5π/12),k∈Z
收起
设f(x)=sin(2x+π/6)+3/2,g(x)=f(x+a).若g(x)为偶函数,求a的值.
f(x)=2sin(2x+π/6),求g(x)=f(x-π/12)-f(x+π/12)的单调递增区间
已知函数f(x)=sin(2x+π/2),设g(x)=f(x)+f(π/4-x),求函数g(x)的单调递增区间
-π/2>f(x)+g(x)f(x)-g(x)sin{g(x)}
函数f(x)=sin(2x+π/6),g(x)=cos(x+φ),|φ|
g(x)与f(x)=sin(x/2+π/6)的图象关于直线x=π对称,求g(x)
已知函数f(x)=cos(2x-π/3)+2sin^2 x (2)设函数g(x)=[f(x)]^2+f(x),求g(x)的值域已知函数f(x)=cos(2x-π/3)+2sin^2 x(2)设函数g(x)=[f(x)]^2+f(x),求g(x)的值域
若f(x)=2sin[(π/4)x+π/4] g(x)与f(x)关于直线x=2对称 求g(x)
f(x)=3Sin(2x+派/3) , g(x)和f(x)关于x=派/6对称,求g(x)?
函数g(x)与函数f(x)=-sin(2x+π/6)+1/2关于原点对称,求g(x)解析式
已知f(x)=cos(2x-π/3)+sin²x-cosx(1)求f(x)周期及对称轴方程(2)g(x)=f²(x)+f(x),求g(x)值域
f(x)=sin(x/2+π/6) g(x)与f(x)关于x=π对称,则g(x)=?
f(x)是偶函数,g(x)是奇函数f(x)+g(x)=根号2sin(2x+π/4).求f(x) g(X)的解析式帮忙写过程.谢谢
已知F(X)=根号3COS^2 X+SIN XCOS X-2SIN X*SIN(X-π/6),求F(X)的最大值
f(x)=sin[(sinx)^2],g(x)=3x^2+4x^3,求当x趋近于0时,f(x)/g(x)的极限
f(x)=2sin π/3(x+1)+2 与 g(x)的图像关于x=1对称,求g(x)
g(x)和f(x)=sin(x=5/9π)关于x=2对称,求g(x)
f(x)=sin(2x+π/6)设g(x)=f(X)-cos2x,求函数g(X)在区间x∈[0,π/2]上的最大值和最小值