如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为______

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:14:17

如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为______
如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为______

如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为______

DE=1/2
如图,过点P做BC平行线交AC于点M
       ∴∠AMP=∠ACB=∠A=60°,∠MPD=∠Q
       ∴△APM为等边三角形
       ∴AP=PM=QC
       ∵PE⊥AC
       ∴E为AM中点,EM=AM/2
       ∵∠PDM=∠QDC,PM=QC,∠MPD=∠Q
       ∴△PDM≌△QDC(AAS)
       ∴MD=CD=MC/2
       ∴DE=EM+DM=AM/2+CM/2=AC/2=1/2
      

如图,等边△ABC中,点E,F分别是AB,AC的中点,P为BC上一点,连接EP,作等边△EPQ,连接FQ,EP.(1)若等边△ABC的边长为20,且∠BPF=45°,求等边△EPQ的边长. (2)求证BP=EF+FQ( 题目上少了一句话,我在这添一下】:如图,过边长为1的等边△ABC的.【其他的就在图上了】 如图,等边△ABC和等边△AEF的一边都在x轴上,双曲线y=k/x(k>0)边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长. 数学题等腰三角形如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,DE的长为?答案是1/3 如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为______ 如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为A. B. C. D.不能确定 我看不出来了. 如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PQ=CQ时,连接PQ交AC边于D,则DE的长为( ) 过边长为1的等边△ABC的边AB上的一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,则DE的长为 过边长为1的等边△ABC的边AB上的一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,则DE的长为过边长为1的等边△ABC的边AB上的一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,则DE的长为 如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC分别交于点D,点E,过点D作DF⊥AC,垂足为点F.(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H.若等边△ABC的边长 如图,等边△ABC的边长为1cm,点DE分别是AB,AC上的点.将△ADE沿直线DE折叠,点A落在A'处,求阴影部分周长 如图,已知等边△OAB的边长为1,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1与OB相交于点A2,已知等边△OAB的边长为1,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1与OB相交于点A2,再 如图,已知等边△ABC,D是AB的中点,过点D作DF⊥AC,垂足为F,过点F作FH⊥BC,垂足为H,若等边△ABC的边长为4,求BH的长. 如图,已知△ABC是等边三角形,D是AC上一点,BD 的垂直平分线交AB于E,交BC于F若等边△ABC边长为6,AD=2,求出BE:BF的值 如图,等边△ABC的边长为2,正方形DEFG的顶点D、E在边BC上,F、G分别在边AC、AB上,则正方形的边长是A. 1 B.√3 C.√3-1 D.4√3-6 如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF(1)说明,DAEF是平行四 如图,过边长为1的等边△ABC的边AB上一点P,PE⊥AC于E,Q为 BC延长线上一点,当PA=CQ时,连PQ交AC边于D,真希望哪位能将大致的过程写出来则DE的长为多少呢? 真是抱歉啊 可能我是太急了 呵呵 能 如图,D为等边三角形ABC的边AB上的一点,从CD为边作等边△CDE,联结AE说明AE∥BC