若|x|≤π/4,那么函数F(x)=cos^2x+sinx的最大值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:40:27

若|x|≤π/4,那么函数F(x)=cos^2x+sinx的最大值为
若|x|≤π/4,那么函数F(x)=cos^2x+sinx的最大值为

若|x|≤π/4,那么函数F(x)=cos^2x+sinx的最大值为
答:
|x|<=π/4,-π/4<=x<=π/4
f(x)=cos²x+sinx
=1-sin²x+sinx
=-(sinx-1/2)²+1/4
sin(-π/4)<=sinx<=sin(π/4)
-√2/2<=sinx<=√2/2
所以:当sinx-1/2=0即sinx=1/2时f(x)取得最大值1/4