证明方程x5-3x+1=0在1与2之间至少存在一个实根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:11:41

证明方程x5-3x+1=0在1与2之间至少存在一个实根
证明方程x5-3x+1=0在1与2之间至少存在一个实根

证明方程x5-3x+1=0在1与2之间至少存在一个实根
证明方程x5-3x+1=0在1与2之间至少存在一个实根
证明:设函数y=x5-3x+1
∵f(1)=x^5-3x+1=1-3+1=-10
∴函数在【1,2】存在零点,
即在【1,2】上存在实数a,使f(a)=0
所以方程x5-3x+1=0在1与2之间至少存在一个实根

当x=1时,x^5-3x+1=1-3+1=-1<0
当x=2时,x^5-3x+1=32-6+1=27>0
根据根的分布,可以知道方程x5-3x+1=0在1与2之间至少存在一个实根

因为x5-3x+1=y是个连续函数,所以只要证明在存在y>0,y<0则可。依x5-3x+1=y的图形可以很容易看出。