用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:47:50

用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b)
用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b)

用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b)
这个是用柯西中值定理证明的,令g(x)=lnx,则由柯西中值定理有
[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ),然后把g代入就行了

用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b) 高等数学-证明题- 中值定理 f(a)g(b)-f(b)g(a)=(b-a)(f(a)g'(ξ)-f'(ξ)g(a))f(x),g(x)在[a,b]上连续,在(a,b)内可导,证明存在ξ∈(a,b) 使得 f(a)g(b)-f(b)g(a)=(b-a)(f(a)g'(ξ)-f'(ξ)g(a)). 中值定理的证明题 f(x)在(a,b)内可导,f(a)=f(b)=0.证明:对任意实数m,有ξ,使f`(ξ)/ f(ξ)=m如题 用导数、微分及中值定理证明不等式证明:当x>1时,e^x > ex罗尔定理:如果f(a)=f(b) (a 涉及到使用零点定理的一道高数证明题,设f(x)在[a,b]上连续,f(a)=f(b),证明,存在Xo属于(a,b),使得f(Xo)=f(Xo+(b-a)/2) 利用泰勒公式,最值定理,介值定理证明!f(x)在[a,b]连续,在(a,b)内具有二阶连续导数,证至少存在一个ξ ∈(a,b)使 f(b) -2f((a+b)/2)+f(a)=[((b-a)^2)/4]f ''(ξ) 第二中值定理能用积分第一中值定理证明么?第二中值定理:设f(x)在[a,b]上可积,g(x)在[a,b]上单调,则存在ξ∈[a,b],使得 ∫(a,b) f(x)g(x)dx= g(a)∫(a,ξ) f(x)dx + g(b)∫(b,ξ) f(x)dx积分第一中值定理:若f(x 一道用中值定理证明的证明题.设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈(a,b)使e^(η-ξ )[f(η )+f '(η )]=1 介值定理推论的证明设f(x)在[a,b]内连续,且f(a)*f(b) 柯西定理的应用!设f(x)在[a,b]内连续,在(a,b)可导(a>0),试用柯西定理证明存在ξ属于(a,b),使得 {f(b)-f(a)}/(b-a) =f '(ξ) *{ (a+b)/(2ξ)} 没有思路.. 高数罗尔定理应用设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明 在(a,b)内至少存在一点c ,使f'(c)-f(c)=0 达布定理如何证明?下面的导函数介值性定理即是达布定理.定理:设f'(x)在[a,b]上存在,r是f'(a)与f'(b)之间的任意一个值,则存在一点c∈[a、b]使得f'(c)=r.但是如何证明? 拉格朗日中值定理的证明题设f(x)在[0,1]上连续.在(0,1)内可导,求证:存在ξ属于(0,1),使f'(ξ)=[f(ξ)-f(a)]/[b-ξ]问题的题设搞错了,应该是 设f(x)在[a,b]上连续.在(a,b)内可导,求证:存在ξ属于(a,b),使f'( f(a+b)=f(a)+f(b),证明f(a+b)是奇函数 高数微积分【中值定理】设f(x)在[a,b]上可微,且f(0)=0 |f’(x)|≤M|f(x)| M为正常数,证明f(x)=0在[0,1/(2M)]中反复用拉格朗日中值定理,能推出f在该区间内恒为0 关键就是这个 高数中值定理证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明对任意给定的正数a和b,在(0,1)内存在不相等的实数ξ,η,使得a/f'(ξ)+b/f'(η)=a+b 数学中值定理处的证明题,帮帮小弟,已知,f(x)在[a,b]上可导,f(a)=f(b),证明存在两个不同的ξ、η,满足:f`(ξ) f`(η)——+——=0(前后都是分数,不好打,粘贴图片太慢)3a+b 4η 是不是要利用到拉格朗日中值定理?怎么求?f(x)在[a,b]上有二阶导数,且f(a)=f(b)=0又F(x)=(x-a)f(x).证明在(a,b)上至少存在一点ξ,使F’’(ξ)=0