数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数1)当a2=-1时,求入及a3的值2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:52:34
数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数1)当a2=-1时,求入及a3的值2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数
1)当a2=-1时,求入及a3的值
2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
数列an满足a1=1,an+1=(n^2+n-入)an.(n=1,2……),入是常数1)当a2=-1时,求入及a3的值2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
1)a1=1,a2=-1
根据通项公式,a2 = (1^2+1-λ)*a1.所以,我们有-1 = (2-λ)*1,λ=3.
因此,a3 = (2^2+2-3)*a2 = 3*a2 = -3.
2)为了使得an为等差数列,我们要求d = a(n+1) - an为常数.
根据通项公式,我们有,a(n+1) - an = (n^2+n-λ-1)an.
已知a1 = 1,所以,a2 = 2-λ,d = a2 - a1 = 1-λ.
a3 = (2^2+2-λ)a2 = (6-λ)(2-λ),d = a3 - a2 = (5-λ)*(2-λ).
为了得到等差数列,公差必须相等,所以,1-λ = (5-λ)*(2-λ),解得,λ = 3,d = -2.
将λ代入通项公式,我们有a(n+1) = (n^2+n-3)an,所以,a4 = -27.但是,a4 - a3 = -24 ≠ d.
因此,an不可能成为等差数列.
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an
数列{an}满足a1=1 an+1=2n+1an/an+2n
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足an+1=2an+3.5^n,a1=6.求an
数列an满足a1=1/3,Sn=n(2n-1)an,求an
数列{an}满足a1=2,a(n+1)=2an+n+2,求an
数列an满足a1=1,a(n+1)=an/[(2an)+1],求a2010
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an
已知数列{an}满足a1=1,an+1·an=2^n 则s2012
已知数列{an}满足a1=1/2,sn=n^2an,求通项an
数列[An]满足a1=2,a(n+1)=3an-2 求an
已知数列{an},满足a1=1/2,Sn=n²×an,求an
已知数列an满足a1=1/2 sn=n平方×an 求an
数列an满足a1=0,An+1=an+2n求a2009
已知数列An满足 A1=1/2 Sn=N²An 求An
已知数列an满足a1=1 Sn=2an+n 求an
数列an满足a1=1/2,a1+a2+a3……an=n^2an,则an
已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列