减一些三角形,正方形,正五边形,正六边形……通过拼图思考,用不同的两种正多边形做平面密铺,有几种可为什么/

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:57:30

减一些三角形,正方形,正五边形,正六边形……通过拼图思考,用不同的两种正多边形做平面密铺,有几种可为什么/
减一些三角形,正方形,正五边形,正六边形……通过拼图思考,用不同的两种正多边形做平面密铺,有几种可
为什么/

减一些三角形,正方形,正五边形,正六边形……通过拼图思考,用不同的两种正多边形做平面密铺,有几种可为什么/
首先是各种正多边形的内角:
3 60
4 90
5 108
6 120
7 128.5714286
8 135
9 140
10 144
11 147.2727273
12 150
13 152.3076923
14 154.2857143
15 156
我的理解是要求两种不同正多边形的内角和达到360度即可.边数大于12的情况,两个内角相加就大于300度,剩下不到60度,三角形都放不下,可以不考虑.
对于正十二边形,两个内角为300度,剩下60度,满足要求,记为2*[12]+[3]
对于正十一边形,两个内角为294.5度,剩下65.5度,没有满足要求的组合.
对于正十边形,两个内角为288度,剩下72度,没有满足要求的组合.
对于正九边形,两个内角为280度,剩下80度,没有满足要求的组合.
对于正八边形,两个内角为270度,剩下90度,满足要求,记为2*[8]+[4]
对于正七边形,两个内角为257.1度,剩下102.9度,没有满足要求的组合.
对于正六边形,两个内角为240度,剩下120度,满足要求,记为2*[6]+2*[3],它有两种排列方式.
对于正五边形,两个内角为216度,剩下144度,看起来满足要求,但通过绘图发现不能成立.
对于正方形,三个内角为270度,没有满足要求的组合;两个内角为180度,满足要求,记为2*[4]+3*[3],它有两种排列方式.
对于三角形,一个、两个、三个内角的情况已经列举过了,五个内角相加为300度,剩下60度,还是三角形,四个内角相加为240度,剩下120度,满足要求,记为4*[3]+[6]
综上可知,共有五种可行的角度组合.我共找到7种排列方式,如图.
另外,同一种组合方式的不同排列方式之间,可以任意组合,无缝连接,那情况就很多,不分析了.

减一些三角形,正方形,正五边形,正六边形……通过拼图思考,用不同的两种正多边形做平面密铺,有几种可为什么/ 求三角形、正方形、正五边形、正六边形、正七边形的轴对称条数 正三角形 正方形 正五边形 正六边形 哪两种l可以平面镶嵌 铺地砖能选择几种;正方形 正三角形 正五边形 正六边形 求平面几何图形对角线数量的公式求:三角形、正方形、正五边形、正六边形、.、正N边形的对角线的数目的公式 正三角形、正方形、正五边形、正六边形、正七边形、正八边形、正九边形镶嵌,选法有几种、各是多少 在正三角形、正方形、正五边形、正六边形、正八边形中,能够密铺的有 一个透明封闭的正方体容器内恰盛有一半体积的水 任意转动正方体水面在容器内的形状可能是正方形 三角形 矩形 等腰梯形 正五边形 正六边形中的 矩或正六边形 为什么 圆的内接正三角形、正方形、正五边形、正六边形哪个周长最大?如题. 正三角形,正方形,正五边形,正六边形哪种不能镶嵌成平面图形? 正三角形,正方形,正五边形,正六边形等这些正多边形共同的特点 同一园的内接正三角、正方形、正五边形,正六边形中,周长最大的是 初一数学题:在等边三角形、正方形、正五边形、正六边形中,具有稳定性的图形有___个 正三角形,正方形,正五边形,正六边形哪种不能镶嵌成平面图形 正三角形,正方形,正五边形,正六边形 不能用同一种做平面的是? 哪种正多边形不能铺满地面?1,正三角形2,正方形3,正五边形4,正六边形 不能与正方形密铺的是——1.正五边形 2.正六边形(why) 可平面镶嵌的正多边形除了正三角形、正方形、正五边形、正六边形之外还有没有?