若tana=2则sin(2a+π/3)的值为4-3根号3/10 用二倍角解题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:10:16

若tana=2则sin(2a+π/3)的值为4-3根号3/10 用二倍角解题,
若tana=2则sin(2a+π/3)的值为
4-3根号3/10 用二倍角解题,

若tana=2则sin(2a+π/3)的值为4-3根号3/10 用二倍角解题,
sin(2a+π/3)
=sin2acosπ/3+cos2asinπ/3
=sinacosa+√3/2*(cos²a-sin²a)
=[sinacosa+√3/2*(cos²a-sin²a)]/(cos²a+sin²a) (分子分母同除以cos²a)
=[tana+√3/2*(1-tan²a)]/(1+tan²a)
=[2+√3/2*(1-4)]/5
=(4-3√3)/10

sin(2a+π/3)
=sin2acosπ/3+cos2asinπ/3
=1/2×2sinacosa+√3/2(2cos²a-1)
=sinacosa+√3cos²a-√3/2
=sinacosa/(sin²a+cos²a)+√3cos²a/(sin²a+cos²a)-√3/2 (分子分母...

全部展开

sin(2a+π/3)
=sin2acosπ/3+cos2asinπ/3
=1/2×2sinacosa+√3/2(2cos²a-1)
=sinacosa+√3cos²a-√3/2
=sinacosa/(sin²a+cos²a)+√3cos²a/(sin²a+cos²a)-√3/2 (分子分母同除cos²a)
=tana/(tan²a+1)+√3/(tan²a+1)-√3/2
=2/(2²+1)+√3/(2²+1)-√3/2
=2/5+√3/5-√3/2
=4/10+2√3/10-5√3/10
=(4-3√3)/10

收起