证明:当x>0时,成立不等式x/1+x^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:14:00
证明:当x>0时,成立不等式x/1+x^2 证明:当x>0时,成立不等式x/1+x^2 全部展开 收起
证明:当x>0时,成立不等式x/1+x^2
证明:当x>0时,成立不等式x/(1+x²)
=[(1-x²)-(1+x²)]/(1+x²)²=-2x²/(1+x²)<0,故y是减函数;当x=0时,y=0;当x>0时必有y<0;
即不等式x/(1+x²)
再设u=arctanx-x,由于u'=1/(1+x²)-1=-x²/(1+x²)<0,故u也是减函数;当x=0时u=0;故当x>0时
必有u=arctanx-x<0,即不等式arctanx
于是命题得证.
1、令f(x)=arctanx-x
则f`(x)=1/(1+x^2)-1=-x^2/(1+x^2)
当x>0时有f`(x)<0
所以f(x)在(0,正无穷)上是减函数
所以当x>0时有f(x)
1、令f(x)=arctanx-x
则f`(x)=1/(1+x^2)-1=-x^2/(1+x^2)
当x>0时有f`(x)<0
所以f(x)在(0,正无穷)上是减函数
所以当x>0时有f(x)
g`(x)=1/(1+x^2)-(1-x^2)/(1+x^2)^2=2x^2/(1+x^2)^2>0
所以g(x)在(0,正无穷)上是增函数
所以当x>0时有g(x)>f(0) 又g(0)=arctan0-0/(1+0^2)=0
即arctanx-x/(1+x^2)>0
即arctanx>x/(1+x^2)
于是原题得证