如图:在△ABC的AB边上截取AD=AC,连结CD,完成推理过程(1)∵AD+AC>CD( ),又∵AD=AC( ),∴2AD>CD.(2)∵BD=AB-AD,AD=AC( )∴BD=AB-AC,又∵AB-AC<BC( )∴BD<BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:57:59

如图:在△ABC的AB边上截取AD=AC,连结CD,完成推理过程(1)∵AD+AC>CD( ),又∵AD=AC( ),∴2AD>CD.(2)∵BD=AB-AD,AD=AC( )∴BD=AB-AC,又∵AB-AC<BC( )∴BD<BC
如图:在△ABC的AB边上截取AD=AC,连结CD,完成推理过程
(1)∵AD+AC>CD( ),
又∵AD=AC( ),
∴2AD>CD.
(2)∵BD=AB-AD,AD=AC( )
∴BD=AB-AC,
又∵AB-AC<BC( )
∴BD<BC

如图:在△ABC的AB边上截取AD=AC,连结CD,完成推理过程(1)∵AD+AC>CD( ),又∵AD=AC( ),∴2AD>CD.(2)∵BD=AB-AD,AD=AC( )∴BD=AB-AC,又∵AB-AC<BC( )∴BD<BC
(1)∵AD+AC>CD( 三角形任意两边的和大于第三边 ﹚
又∵AD=AC( 已知 ),
∴2AD>CD.
(2)∵BD=AB-AD,AD=AC( 已知 )
∴BD=AB-AC,
又∵AB-AC<BC( 三角形任意两边的差小于第三边 )

如图,在△ABC中,BE、CF,分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB 连结AD AG 如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG 已知,如图,在△ABC中,BE、CE分别是AC、AB两边上的高,早DE上截取BD=AC,在CF的延长线上截取CG=AB,连接已知,如图,在△ABC中,BE、CE分别是AC、AB两边上的高,在DE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD 如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,证AD⊥AG △ABC中,AB>AC,AE是△ABC的中线,在AB边上截取AD=AC,连接CD,与AE交于点M此图 如图:在△ABC的AB边上截取AD=AC,连结CD,完成推理过程(1)∵AD+AC>CD( ),又∵AD=AC( ),∴2AD>CD.(2)∵BD=AB-AD,AD=AC( )∴BD=AB-AC,又∵AB-AC<BC( )∴BD<BC 如图:在△ABC的AB边上截取AD=AC,连结CD,完成推理过程(1)∵AD+AC>CD( ),又∵AD=AC( ),∴2AD>CD.(2)∵BD=AB-AD,AD=AC( )∴BD=AB-AC,又∵AB-AC<BC( )∴BD<BC 如图在三角形ABC中,BE,CF分别是AC,AB两边上的高.如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.AG⊥AD 如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB连接AD.AG.DG 如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB连接AD.AG.DG 如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG. 如图在三角形ABC中,BE,CF分别是AC,AB两边上的高……如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD. 如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB,试判断AB,AC的关系,并说明理由 25、(12分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB连结AD、AG。求证:(1)AD=AG,(2)AD与AG的位置关系如何。 在△ABC中,BE CF分别是AC AB两边上的高,在BE上截取BD=AC.在CF上截取CG=AB,连接AD,AG求证AD=AG,AD⊥AG 已知,如图,在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF是延长线上截取CG=AB,连结AD、AG.求证:AG=AD 已知:如图△ABC中,AB=AC,在BA的延长线上及AC边上分别截取AE=AF.求证:EF ⊥ BC 如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AC、DG.(1)求证△ABD全等于△GCA(2)请你确定△ADG的形状,并证明结论.