若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.(1)求证:f(x)-1为奇函数;(2)f(x)在R上的增函数; (3)若f(4)=5,解不等式f(3m²-m-2)<

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:38:50

若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.(1)求证:f(x)-1为奇函数;(2)f(x)在R上的增函数; (3)若f(4)=5,解不等式f(3m²-m-2)<
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.
(1)求证:f(x)-1为奇函数;(2)f(x)在R上的增函数; (3)若f(4)=5,解不等式f(3m²-m-2)<3.

若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.(1)求证:f(x)-1为奇函数;(2)f(x)在R上的增函数; (3)若f(4)=5,解不等式f(3m²-m-2)<
(1) 令x1=x2=0,得到f(0)=1.令x1=x,x2=-x,则f(0)=f(x)+f(-x)-1=1,即f(x)-1=-(f(-x)-1),即f(x)-1为奇函

(2) 令x1=x,x2=-y,x,y属于R,且x>y,即x-y>0,由f(x1+x2)=f(x1)+f(x2)-1
可知:f(x-y)=f(x)+f(-y)-1>1
由(1)知f(x)-1为奇函数,则f(-y)-1=-(f(y)-1),上式可化为:f(x-y)=f(x)+f(-y)-1=f(x)-(f(y)-1)>1,
即f(x)-f(y)>0.所以f(x)在R上的增函数.
(3) 因为f(4)=5,令x1=x2=2,则f(4)=f(2)+f(2)-1=5,所以f(2)=3;所以f(3m²-m-2)<3=f(2),另外,
由(2)可知f(x)在R上的增函数,所以3m²-m-2

(1) 令x1=x2=0,得到f(0)=1. 令x1=x,x2=-x,则f(0)=f(x)+f(-x)-1=1,即f(x)-1=-(f(-x)-1),即f(x)-1为奇函

(2) 令x1=x, x2=-y,x,y属于R,且x>y,即x-y>0,由f(x1+x2)=f(x1)+f(x2)-1
可知:f(x-y)=f(x)+f(-y)-1>1
...

全部展开

(1) 令x1=x2=0,得到f(0)=1. 令x1=x,x2=-x,则f(0)=f(x)+f(-x)-1=1,即f(x)-1=-(f(-x)-1),即f(x)-1为奇函

(2) 令x1=x, x2=-y,x,y属于R,且x>y,即x-y>0,由f(x1+x2)=f(x1)+f(x2)-1
可知:f(x-y)=f(x)+f(-y)-1>1
由(1)知f(x)-1为奇函数,则f(-y)-1=-(f(y)-1),上式可化为:f(x-y)=f(x)+f(-y)-1=f(x)-(f(y)-1)>1,
即f(x)-f(y)>0. 所以f(x)在R上的增函数。
(3) 因为f(4)=5,令x1=x2=2,则f(4)=f(2)+f(2)-1=5,所以f(2)=3;所以f(3m²-m-2)<3=f(2), 另外,
由(2)可知f(x)在R上的增函数,所以3m²-m-2<2,解得-1

收起

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足[f-f]/[x1-x2] 若定义在R上的函数f(x)满足:对任意X1 X2有f(X1+X2)=f(X1)+f(X2)+1若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是(A)f(x)为奇函数 (B)f(x)为偶函数(C) f(x)+1为奇函 若定义在R上的函数f(X)满足:对任意X1,X2都有f(X1+X2)=f(X1)+f(X2)+1,则f(X)+1为偶函数,为什么不好意思,应该为奇函数 若定义在R上的函数f(x)满足:若定义在R上的函数f(x)满足:对任意x1,x2属于R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是:1、f(x)为奇函数;2、f(x)为偶函数;3、f(x)+1为奇函数;f(x)+1为偶函数. 定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0 (1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数X1,X2,总有f(X1+X2)=f(X1)f(X2),且x>0时,0 证明增减性的定义在R上的函数f(x)对任意实数x1 x2满足f(x1+x2)=f(x1)+f(x2)+2 当x大于0时有f(x)在R上是增函数 【急】设定义在R上的函数f(x)满足对任意x1x2∈(-∞,0],有f(x1 x2)=若定义在R上的函数f(x)满足对任意x1x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是?A.f (x)为奇函数B.f(x)为偶函数C.f(x) (1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时...(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时,0<f( 若定义在R上的函数fx满足:对任意x1,x2∈R有f(x1+x2)=fx1+fx2+1若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是A.f(x)+1为奇函数B.f(x)+1为偶函数C.f(x)为奇函数D.f(x) 高一数学,若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法正确的是高一数学,若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的 已知定义在R上的函数y=f(x)满足以下三个条件:(详解) 已知定义在R上的函数y=f(x)满足以下三个条件:(1)对任意的x∈R,都有f(x+4)=f(x);(2)对任意的x1,x2∈R,且0≤x1 定义在R上的函数y=f(x)若对于任意不等实数x1,x2满足[f(x1)-f(x2)]/(x1-x2) 关于函数单调性的题,已知定义在R上的函数f(x),对任意x1,x2∈R,且x1≠x2,总有(x1-x2)[f(x1)-f(x2)]>0,且函数f(x)的图像经过点A(5,-2),若f(2m-1)<-2,求m的取值 已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y) 求f(0)已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)(1) 求f(0);并写出适合条件的函数f(x)的 【高一数学】判断奇偶性》》》》若定义在R上的函数f(x)满足对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则(A)f(x)为奇函数(B)f(x)为偶函数(C)f(x)+1为奇函数(D)f(x)+1为偶函数对每个选项作出分 设f(x)是定义在R上的函数若存在x2>0对于任意x1∈R都有f(x1)<f(x1+x2)成立则函数f(x)在R上单调递增why错了 1、定义在R上的函数f(x)(f(x)≠0)满足对任意实数x1、x2都有f(x1+x2)=f(x1)f(x2)且x>0时,0<f(x)<1,判断函数f(x)的单调性.2、定义在R上的不恒为0的函数f(x)满足:对任意x1、x2都有f(x1x2)=x