哥德巴赫猜想证明了什么?可以抄袭

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:29:57

哥德巴赫猜想证明了什么?可以抄袭
哥德巴赫猜想证明了什么?
可以抄袭

哥德巴赫猜想证明了什么?可以抄袭
哥德巴赫猜想哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和
内容就知道它要证明的是什么了
哥德巴赫猜想的意义
一件事物之所以引起人们的兴趣,因为我们关心他,假如一个问题的解决丝毫不能引起人类的快感,我们就会闭上眼睛,假如这个问题对我们的知识毫无帮助,我们就会认为它没有价值,假如这件事情不能引起正义和美感,情操和热情就无法验证.
哥德巴赫猜想是数的一种表现次序,人们持久地爱好它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德巴赫猜想是错误的,它将限制我们的观察能力.使我们难以跨越一些问题并无法欣赏.一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感.哥德巴赫猜想实际是说,任何一个大于3的自然数n.都有一个x,使得n+x与n-x都是素数,因为,(n+x)+(n-x)=2n.这是一种素数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为素数这种似乎杂乱无章的东西被人们用自然数n对称地串联起来,正如牧童一声口稍就把满山遍野乱跑的羊群唤在一起,它使人心晃神移,又像生物基因DNA,呈双螺旋结构绕自然数n转动,人们从玄虚的素数看到了纯朴而又充满青春的一面.对称不仅是视觉上的美学概念,它意味着对象的统一.
素数具有一种浪漫的气质,它以神秘的魅力产生一种不定型的朦胧,相比之下,圆周率,自然对数.虚数.费肯鲍姆数就显得单纯多了,欧拉曾用一个公式把它们统一起来.而素数给人们更多的悲剧色彩,有一种神圣不可侵犯的冷漠.当哥德巴赫猜想变成定理,我们可以看到上帝的大智大慧,乘法是加法的重叠,而哥德巴赫猜想却用加法将乘性概括.在这隐晦的命题之中有着深奥的知识.它改变人们对数的看法:乘法的轮郭凭直观就可以一目了然,哥德巴赫猜想体现一种探索机能,贵贱之别是显然的,加法和乘法都是数量的堆积,但乘法是对加法的概括,加法对乘性的控制却体现了两种不同的要求,前者通过感受可以领悟,后者则要求灵感——人性和哲学.静观前者而神往于它的反面(后者),这理想的境界变成了百年的信仰和反思,反思的特殊价值在于满足了深层的好奇,是一切重大发现的精神通路,例如录音是对发音的反思结果,磁生电是对电生磁的反思结果.顺思与反思是一种对称,表明一种活力与生机.顺思是自然的,反思是主动的,顺思产生经验,反思才能产生科学.顺思的内容常常是浅表的公开的,已知的.反思的内容常常是隐蔽的,未知的.反思不是简单的衷情回顾不是对经验的眷念,而是寻找事物本质的终极标准——-对历史真相或事物真相的揭示.

任何大于四的偶数都是两个素数之和

这个证明了吗?貌似没有啊

当自己是神啊~~

去抄神啊~~