如何求矩阵的秩

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:41:25

如何求矩阵的秩
如何求矩阵的秩

如何求矩阵的秩
一般是用行变换化梯形 非零行数就是矩阵的秩
(列变换也可以用, 但行变换足够用了)
还一个方法是求A的最高阶非零子式, 这个太麻烦, 一般用在证明题中.
满意请采纳 有问题就消息我或追问

线性代数的是吧?
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
定义1. 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 ...

全部展开

线性代数的是吧?
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
定义1. 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。
定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。
还有就是线性代数的书,我指同济大学的貌似写的很清楚了,看几个例题绝对能懂

收起