线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:41:54

线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A
线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)
设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A,B),且B‘A=0

线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A
应该要让P可逆.
设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A,B)可逆,且B‘A=0.
证明:考虑齐次线性方程组A'x=0,系数矩阵A'的秩是m,方程组有n个未知量,所以它的基础解系有n-m个向量,设b1,b2,...,b(n-m)是一个基础解系,记矩阵B=(b1,b2,...,b(n-m)),则A'B=0,转置后是B'A=0.
再证明P可逆,考虑方程组Pz=0,设z=
(x)
(y)
,则Pz=Ax+By=0,所以A'(Pz)=A'(Ax+By)=(A'A)x+(A'B)y=(A'A)x=0,A'A是m阶方阵,秩为m,所以可逆,所以x=0.同理,B'(Pz)=B'(Ax+By)=(B'A)x+(B'B)y=(B'B)y=0,B'B是n-m阶方阵,秩为n-m,所以可逆,所以y=0.所以方程组Pz=0只有零解,所以P可逆.

线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A 关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r① 一个线性代数证明题!设A为n×m矩阵,B为m×n矩阵,n小于m,若AB等于E,证明B的列向量组线性无关.证明B的列向量组线性无关 线性代数题目———设A为m x n 矩阵,B为 n x m 矩阵,且m>n.证明:|AB| = 0.这道题怎么证明? 求解几道线性代数题目(1)设A,B都是n阶对称矩阵,则下列矩阵中()不是对称矩阵.(A)A^T B ,AB C, kA(k为常数) D A+B (2)设A是4×3矩阵,B是3×4矩阵,下列说法正确的是()A, AB的列向量组线性 线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC 考研数学三:线性代数矩阵和秩的问题 设A是m*n矩阵,r(A)=m 线性代数:设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0 设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵. 看看这个线性代数证明题咋证明啊?设m*n阶矩阵A的秩为m,n*(n-m)阶矩阵B的秩为n-m,又AB不=0,向量(阿尔法)是齐次方程组Ax=0的一个解向量,证明:存在唯一的一个n-m维列向量(贝塔)使(阿尔法 线性代数的几道题目~1-4为判断题并说明理由,5题是填空题~1.设A,B均为n阶对称方阵,则AB=BA.2.设a为n(n>2)阶非零列向量,A=aaT(aT为a的转置矩阵),则A可逆.3.设A为m*n矩阵,则AAT为对称矩阵.4.2n+1阶方阵A 设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ线性代数 设A为m×n矩阵,B为n×s矩阵,已知A的列向量组线性无关,证明:B与AB有相同的秩. 设A为m×n矩阵,B为n×s矩阵,已知A的列向量组线性无关,证明:B与AB有相同的秩 设A为m*n阶实矩阵,X为(0,A;AT,0)的非零特征值,证明X^2为ATA的特征值线性代数题. 线性代数矩阵与行列式的应用A为m×n维矩阵,B为n×m维矩阵,当m>n时,试证:|AB|=0. 《线性代数》中关于矩阵的一题目:设A是n阶矩阵,P是n阶可逆矩阵,已知n维列向量a是矩阵P-1(P的负1次方)AP的属于特征值λ的特征向量,则矩阵A属于特征值λ的特征向量是______? 线性代数大学试卷两题1.设A(m*n)为实矩阵,则线性方程组Ax=0只有零解是矩阵(A^T *A) 为正定矩阵的( 充分条件 )2.设 A(m*n)为实矩阵,秩r(A)=n ,则 ( )(A) 相似于 ; (B)A*(A^T) 合同于E ;(C) 相似