一道大学高数证明题,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:55:26
一道大学高数证明题,
一道大学高数证明题,
一道大学高数证明题,
题目有误,应为:
设f(x)在[a,b]上连续,且f(a)=f(b)=0,f'(a)f'(b)>0,证明,至少存在一点c∈(a,b),使f(c)=0
证:不妨设f'(a)>0,且f'(b)>0
从而存在足够小的ξ1>0 (ξ1
全部展开
题目有误,应为:
设f(x)在[a,b]上连续,且f(a)=f(b)=0,f'(a)f'(b)>0,证明,至少存在一点c∈(a,b),使f(c)=0
证:不妨设f'(a)>0,且f'(b)>0
从而存在足够小的ξ1>0 (ξ1
即 f(x)在[a,a+ξ1]、[b-ξ2, b]单调递增
∵f(a)=f(b)=0
∴f(a+ξ1)>0 f(b-ξ2)<0
∵f(x)在[a,b]上连续
∴f(x)在[a+ξ1,b-ξ2]上连续
∵f(a+ξ1)、f(b-ξ2)异号
∴至少存在一点c∈(a,b),使f(c)=0(零点存在定理)。
收起