求导:y=[ln(1-x)]^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:54:18

求导:y=[ln(1-x)]^2
求导:y=[ln(1-x)]^2

求导:y=[ln(1-x)]^2
y=u² ,u=lnv,v=1-x

y'= dy/dx=dy/du*du/dv*dv/dx=2u*(1/v)*(-1)=-2ln(1-x)*[1/(1-x)]=[-2ln(1-x)]/(1-x)

y' = 2ln(1-x) * [1/(1-x)] *(-1)
= - 2ln(1-x)/(1-x)

dy/dx=(-2)/(1-x)
2ln(1-x) 先对ln(1-x)整体求导得1/(1-x),再对-x求导得-1,相乘即可
建议在多看公式推导过程

将ln(1-x)看成变量求导,再将1-x看成变量求导即可。
=[2*ln(1-x)]*[1/(1-x)]*[-1]= -2ln(1-x)/(1-x)