高数中值定理问题设f(x)在[1,2]上具有二阶导数f''(x),且f(2)=f(1)=0,如果F(X)=(x-1)f(x),证明至少存在一点m属于(1,2),使得F''(m)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:16:22
高数中值定理问题设f(x)在[1,2]上具有二阶导数f''(x),且f(2)=f(1)=0,如果F(X)=(x-1)f(x),证明至少存在一点m属于(1,2),使得F''(m)=0
高数中值定理问题
设f(x)在[1,2]上具有二阶导数f''(x),且f(2)=f(1)=0,如果F(X)=(x-1)f(x),证明至少存在一点m属于(1,2),使得F''(m)=0
高数中值定理问题设f(x)在[1,2]上具有二阶导数f''(x),且f(2)=f(1)=0,如果F(X)=(x-1)f(x),证明至少存在一点m属于(1,2),使得F''(m)=0
F(1)=0
F(2)=f(2)=0
F(2)=F(1)=0
f(x)在[1,2]上具有二阶导数f''(x),则F(x)在[1,2]上具有二阶导数F''(x)
F'(x)=(x-1)f'(x)
因为F(2)=F(1)=0,至少存在一点a属于(1,2),使得F'(a)=0
F'(1)=0*f'(0)=0
F'(a)=F'(1)=0
至少存在一点m属于(1,a),使得F''(m)=0,a属于(1,2)
即至少存在一点m属于(1,2),使得F''(m)=0
高数中值定理问题设f(x)在[1,2]上具有二阶导数f''(x),且f(2)=f(1)=0,如果F(X)=(x-1)f(x),证明至少存在一点m属于(1,2),使得F''(m)=0
高数微积分【中值定理】设f(x)在[a,b]上可微,且f(0)=0 |f’(x)|≤M|f(x)| M为正常数,证明f(x)=0在[0,1/(2M)]中反复用拉格朗日中值定理,能推出f在该区间内恒为0 关键就是这个
高数 中值定理问题
高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|
拉格朗日中值定理:设f(x)=x的3次方,已知其在闭区间[0,1]上满足拉格朗日中值定理,求ξ
高数证明题,关于中值定理设函数f(x)在[1,2]上连续,在(1,2) 内可导,且f(2)=0,F(x)=(x-1)f(x),证明:至少存在一点ξ∈(1,2)使得F'(ξ)=0.
设f(x)=(3-x^2),x1.证明f(x)在[0,2]上满足拉格朗日中值定理
求函数分f(x)=x^2 在区间[0,1]上满足拉格朗日中值定理的中值
高数中值定理证明设函数f(x)在〔-2,2〕上可导,且f(-2)=0,f(0)=2,f(2)=0.试证曲线弧C:y=f(x)(-2
一道大一高数,关于罗尔定理,或拉格朗日中值定理.设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:在(0,1)内存在一点ε,使得f(ε)+(1-e^(-ε))f’(ε)=0.
一道大一高数,关于罗尔定理,或拉格朗日中值定理设函数f(x)在[0,π/4]上连续,在(0,π/4)上可导,且f(π/4)=0,证明:存在一点c∈(0,π/4),使得2f(c)+sin2c×f‘(c)=0
一个关于中值定理的题,设函数f(x)在[1,e]上连续,0
高数微分中值定理与导数的应用中的几题1.设f(x)在[0,1]上连续,在(0,1)中可导,且f(0)=f(1)=0,f(1/2)=1/2,证明:对任意的c∈(0,1),存在ξ∈(0,1)使得f'(ξ)=c2.已知f(x)在R内可导,且(x→∞)lim f'(x)=e,
高数 微分中值定理一道题描述:设f(x)在[-a,a]上连续,在(-a,a)内可导,且f(-a)=f(a),a>0.证明在(-a,a)内至少存在一点θ,使得f'(θ)=2θf(θ).( ' 指导数)
高数,微分中值定理问题.
高数,微分中值定理问题,
高数微分中值定理问题,
高数中值定理设f(x)在【0,1】上二阶可导,且f(0)=f(1)=0,f(x)在【0,1】上的最小值等于—1,试证:至少存在一点a属于(0,1),使得f(a)大于等于8