(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:39:24
(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
1-sin^6θ-cos^6θ
=1-[(sin^2θ)^3+(cos^2θ)^3]
=1-(sin^2θ+cos^2θ)(sin^4θ-sin^2θcos^2θ+cos^4θ)
=1-(sin^4θ-sin^2θcos^2θ+cos^4θ)
=1-(sin^4θ+2sin^2θcos^2θ+cos^4θ-3sin^2θcos^2θ)
=1-[(sin^2θ+cos^2θ)^2-3sin^2θcos^2θ]
=3sin^2θcos^2θ
1-sin^4θ-cos^4θ
=1-(sin^4θ+cos^4θ)
=1-[(sin^4θ+2sin^2θcos^2θ+cos^4θ-2sin^2θcos^2θ)]
=1-[(sin^2θ+cos^2θ)^2-2sin^2θcos^2θ]
=2sin^2θcos^2θ
所以:(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
=(3sin^2θcos^2θ)/(2sin^2θcos^2θ)
=3/2.
(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
若sinθ+sin^2θ=1,则cos^2θ+cos^4θ+cos^6θ
已知cosθ+cosθ^2=1,则sinθ^2+sinθ^6+sinθ^8=
已知cosθ+cosθ=1,则sinθ+sin∧6θ+sin∧8θ=
化简:1+sinθ+cosθ+2sinθcosθ /1+sinθ+cosθ
设cosθ+cos^2θ=1,则sin^2θ+sin^6θ+sin^8θ的值为
求证sinθ/(1+cosθ)+(1+cosθ)/sinθ=2/sinθ
2sinθ-cosθ=1 (sinθ+cosθ+1)/(sinθ-cosθ+1)如题已知2sinθ-cosθ=1 求(sinθ+cosθ+1)/(sinθ-cosθ+1)
cos θ/(1-tan θ)怎样化成cos θ/[(cosθ-sinθ)/cosθ]
f(θ)=【sinθcosθ/(sinθ+cosθ+1)】+sinθcosθ化简
求证:(1+sinθ-cosθ)/(1+sinθ+cosθ)=sinθ/(cosθ+1)
求证sinθ-cosθ+1/sinθ+cosθ-1=1+sinθ/cosθ
求证:(1+cosθ+cosθ/2) /(sinθ+sinθ/2)=sinθ/1-cosθ
化简[sinθ(1+sinθ)+cosθ(1+cosθ)]*[sinθ(1-sinθ)+cosθ(1-cosθ)]-sin2θ
求证 【sinθ(1+sinθ)+cosθ(1+cosθ)】×【sinθ(1-sinθ)+cosθ(1-cosθ)】=sin2θ
1-cosθ/(2sinθ/2)
化简1+cosθ-sinθ化简(1+cosθ-sinθ)/(1-cosθ-sinθ)+(1-cosθ-sinθ)/(1+cosθ-sinθ)(1+cosθ-sinθ)/(1-cosθ-sinθ)+(1-cosθ-sinθ)/(1+cosθ-sinθ)
证明(1-2sinθcosθ)/(cos^2θ-sin^2θ)=(cos^2θ-sin^2θ)/(1-2sinθcosθ)