求积分:∫dx/sin2x+2sinx需过程,谢谢!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:32:25

求积分:∫dx/sin2x+2sinx需过程,谢谢!
求积分:∫dx/sin2x+2sinx
需过程,谢谢!

求积分:∫dx/sin2x+2sinx需过程,谢谢!
1/[sin2x+2sinx]
=1/[2sinxcosx+2sinx]
=1/[2sinx(1+cosx)](上下都乘以sinx)
=sinx/[2sinx*sinx*(1+cosx)]
所以
∫dx/sin2x+2sinx
=1/2∫sinx/[(1-(cosx)^2)(1+cosx)]dx
=-1/2∫1/[(1-(cosx)^2)(1+cosx)]dcosx(凑微分法,记cosx=t)
=-1/2∫1/[(1-t^2)(1+t)]dt
=-1/2{-1/4*ln(t-1)-1/2*1/(1+t)+1/4*ln(1+t)}+C
=1/8*(ln(cosx-1)+ln(cosx-1)*cosx+2-ln(1+cosx)-ln(1+cosx)*cosx)/(1+cosx)+C

∫dx/sin2x+2sinx
=∫dx/2sinx(cosx+1)
=∫dx/8sin(x/2)cos(x/2){cox(x/2)}^2
=1/4∫1/sin(x/2)cos(x/2)dtan(x/2)
=1/4∫(cos(x/2)/sin(x/2)+sin(x/2)/cos(x/2)dtan(x/2)
=1/4∫1/tan(x/2)dtan(x/2)+1/4∫tan(x/2)dtan(x/2)
=1/4ln绝对值tan(x/2)+1/8{tan(x/2)}^2+C

let t = tan x/2
x = 2 tan-1 (t)
dx = 2/1 + t^2 dt
因为 t = tan x/2, sin x = 2t/1+ t^2, cos x = 1-t^2/1+ t^2
把积分拆开
= ∫dx/2sinxcosx+2sinx
= 1/2∫dx/sin x cos x + sin x <...

全部展开

let t = tan x/2
x = 2 tan-1 (t)
dx = 2/1 + t^2 dt
因为 t = tan x/2, sin x = 2t/1+ t^2, cos x = 1-t^2/1+ t^2
把积分拆开
= ∫dx/2sinxcosx+2sinx
= 1/2∫dx/sin x cos x + sin x
代入
= 1/2 ∫dx/ (2t/1+t^2) * ( 1-t^2/1+t^2) + (2t/1+ t^2)
dx 换成 dt,
= 1/2 ∫1 / (2t/1+t^2) ( 1-t^2/1+t^2 + 1) 乘以 2dt/1+t^2
= ∫ dt/ 2t + 2t * (1+t^2)
= ∫ dt/ 4t + 2t^3
这时候在拆开 = A/ 2t + B/(2+ t^2)
解开 A, B, 然后在积积就很简单了, A, B都是实数, 可以用ln, 不行就用 tan-1。。。
这是临时想出来的, 要一会儿有简单点的方法再跟你说

收起