已知函数f(x)=(lnx+a)/x (a∈R) 当a=1,且x≥1时,证明f(x)≤1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 22:42:51
已知函数f(x)=(lnx+a)/x (a∈R) 当a=1,且x≥1时,证明f(x)≤1
已知函数f(x)=(lnx+a)/x (a∈R) 当a=1,且x≥1时,证明f(x)≤1
已知函数f(x)=(lnx+a)/x (a∈R) 当a=1,且x≥1时,证明f(x)≤1
只需要证明 lnx+1≤x 就可以了
令g(x)=lnx - x +1
g'(x)=1/x-1
而x>=1时,g'(x)
已知函数f(x)=lnx+a/x,当a
已知函数f(x)=lnx+a/x,当a
已知函数f(x)=ax-a/x-2lnx
已知函数fx)=lnx+a/x,若f(x)
已知函数f(x)=lnx,0
已知函数f(x)=lnx,0
已知函数f(x)=lnx-a/x,g(x)=f(x)=ax-6lnx,
已知函数f(x)=lnx-a/x 若f(x)
已知函数f(x)=lnx-a/x,若f(x)
已知函数f(x)=(a-lnx)/x 求f(x)的极值
已知函数f(x)=(x+1)lnx-x+1.
已知函数f(x)=lnx-ax+ (1-a)/x-1已知函数f(x)=lnx-ax (1-a)/x-1(1)a=
已知函数f(x)=根号下x+lnx 则有A f(2)
已知函数f(x)=ax+lnx(a属于R)求f(x)的单调区间.
已知函数f(x)=2lnx-ax+a,讨论f(x)的单调性.
已知函数f(x)=lnx—a,若f(x)
已知a>0,函数f(x)=ax2-lnx 求f(x)的单调区间
已知函数f(x)=(a-1/2)x2+lnx求f(x)极值