如图,在△ABC中,∠BAC=90°,AB=AC,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于点G.求证:BG=AF+FG.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:37:55
如图,在△ABC中,∠BAC=90°,AB=AC,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于点G.求证:BG=AF+FG.
如图,在△ABC中,∠BAC=90°,AB=AC,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于点G.求证:BG=AF
+FG.
如图,在△ABC中,∠BAC=90°,AB=AC,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于点G.求证:BG=AF+FG.
过C作AB的平行线交AF的延长线于K.设GF交AC于M
那么由AB=AC,BAC ACK都是直角,ABE CAK都是90°-CAK知△ABE全等于△CAK.BE=AK
又CF=CF,MCF KCF都是45°,MFC KFC都是90°-角GBC,所以△FMC全等于△FKC.
所以FM=FK
再由角GME=角CMF=角CKF=角AEB=角MEG知道GE=GM
如果求 BG=AF+FG 可以这样
∵AD=AE,AB=AC,∠BAC为公共角
∴△BAE≌△CAD
∴∠ABE=∠ACD,
∴∠DCB=∠EBC
延长GF到H,使FH=AF,连接BH.
在△BAF,△BHF中,
AF=FH,BF为公共边,∠BFA=∠BFH(易证)
∴△BAF≌△BHF
∴∠BAF=∠BHF,∠ABF=∠HBF=45°
∵∠BAF=∠AEB=∠EBF+45°,∠HBG=∠EBF+45°
∴∠GBH=∠BHF
∴GB=GH
∴BG=AF+FG
如图,在△ABC中,∠BAC=90°,AB=AC=a,AD是△ABC的高,求AD的长.
如图,在△ABC中,AB=AC,∠BAC=α,且60°
如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于点D,CE⊥MN于点E,求证:∠BAC=90°.
如图在Rt△abc中,∠bac=90°,∠b=60°,如图,在Rt△abc中,∠bac=90°,∠b=60°,△ab‘c’可以由△abc绕点a顺时针旋转90°得到,连接cc‘,则∠cc'b'的度数为
如图,13.3-21,在△ABC中∠C90°,∠BAC=60°如图.
如图,在△ABC中,∠ABC=90°,CD⊥AB,AF平分∠BAC,求证:∠CFE=∠CEF
如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC
如图 在△abc中 ∠bac=120° ad平分∠bac交bc于d 求证:1/ad=1/ab+1/ac
如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若∠BAC=90°,求证:AD=BD修改∠BAC=30°
如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,求点O到△ABC的三个顶点A,B,C距离的关系
如图,在△ABC中,AB=AD=DC,∠BAD=32°,求∠BAC度数
如图在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D
已知:如图,在△ABC中,AB=AC,∠BAC=α,且60°
如图,在三角形ABC中,角BAC=90°,AB=AC=a,AD是三角形ABC的高,求AD的长.
如图,有个RT△ABC,∠BAC=90°,AB=1,将它放在直角坐标系中,使斜边BC在X轴上,直角顶点A在反比例函数Y=根号如图,有个RT△ABC,∠BAC=90°,∠ABC=30°,AB=1,将它放在直角坐标系中,使斜边BC在X轴上,直角顶点A
如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB 【1】说明:AC=AE+CD图在这儿
如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B事对应点如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B是对应点,点C
如图,在△ABC中,AB=AC,∠BAC=108°,D在AC上且BC=AB+CD,求证:BD平分∠ABC