已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值!已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值,要完完整整的解题过程!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:54:38

已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值!已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值,要完完整整的解题过程!
已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值!
已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值,要完完整整的解题过程!

已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值!已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值,要完完整整的解题过程!
5/3,设P(x,y),由焦半径得丨PF1丨=ex+a,丨PF2丨=ex-a,所以ex+a=4(ex-a),化简得e=5a/3x,因为p在双曲线的右支上,所以x大于或等于a,所以e大于或等于5/3,即e的最大值是5/3.

已知双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别在左右焦点,双曲线的右支上有一点P,已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△ 已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值!已知双曲线在一支上有一点P,左右焦点为F1,F2,且|PF1|=4|PF2|,求离心率的最大值,要完完整整的解题过程! 已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1PF2的面积为2√3,又双曲线离心率为2,求该双曲线的方程 已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1PF2的面积为2√3,若(PF1),1/4(F1F2)^2,(PF2)成等差数列,则双曲线离心率为 *( )代表绝对值 已知焦点在x轴上的双曲线,P在双曲线上,F1,F2分别为双曲线的左右焦点,FP1垂直FP2,若三角形F1PF2的面积为16,双曲线的实轴长为4,求双曲线的标准方程 在双曲线x^2/a^2-y^2/b^2=1上有一点P,F1F2分别为该双曲线的左右焦点,角F1PF2=90°,三角形F1PF2的三条边成等差数列,则双曲线的离心率 已知F1,F2分别为双曲线X2/A2-Y2/B2=1的左右焦点若在双曲线右支上有一点P,满足|PF2|=|F1F2|,且直线PF1与圆X2+Y2=A2相切,则该双曲线的渐进线方程? 已知点p是双曲线x²/16 -y²/9=1右支上的一点,F¹,F²分别是双曲线的左右焦点,M为已知点p是双曲线x²/16 -y²/9=1右支上的一点,F¹,F²分别是双曲线的左右焦点,M为三角 已知双曲线x2/9-y2/27=1与M (5,3) F为右焦点,若双曲线上有一点P,使PM+1/2 PF最小,则点P的坐标是?为什么x/x1=1/3 已知双曲线的中心在坐标原点,焦点在x轴,F1,F2分别为左右焦点,双曲线的右支上有1点已知双曲线的中心在坐标原点,焦点在x轴,F1,F2分别为左右焦点,双曲线的右支上有1点P。∠F1PF2=π/3,S△PF1F2=2 已知双曲线x^2/25-y^2/9=1上有一点P到左焦点的距离为12 已知焦点为F1(0,-6),F2(0,6)的双曲线上有一点P的坐标为(0,3),则双曲线的标准方程 已知双曲线x2/a2-y2/b2=1(a大于0,b大于0)的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF已知双曲线x2/a2-y2/b2=1(a大于0,b大于0)的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则 )已知双曲线的离心率为2,E,F分别为其左,右焦点,点p在双曲线上,角...)已知双曲线的离心率为2,E,F分别为其左,右焦点,点p在双曲线上,角EpF=60度,三角形EPF面积=12倍根号3,求双曲线方程 )已知双曲线的离心率为2,E,F分别为其左,右焦点,点p在双曲线上,角...)已知双曲线的离心率为2,E,F分别为其左,右焦点,点p在双曲线上,角EpF=60度,三角形EPF面积=12倍根号3,求双曲线方程 已知F1,F2分别是双曲线的左右焦点以F1F2为直径的圆与双曲线在第2象限的交点为P,若双曲线的离心率为5,则COS∠PF1F2=? 双曲线X^2/a^2-Y^2/b^2=1左右焦点为F1F2,右支上有一点P,满足双曲线X^2/a^2-Y^2/b^2=1的左右焦点为F1、F2,右支上有一点P,满足:|OP|=√a^2+b^2,如果∠PF1F2=∠PF2F1,双曲线的离心率是多少? 已知F1,F2为双曲线C:x2-y2=1的左右焦点,点P在C上,角F1PF2=60度,则|PF1|乘|PF2|