原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘OF取值范

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:03:08

原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘OF取值范
原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘OF取值范

原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘OF取值范
因为F(―2,0)是已知双曲线的左焦点,所以a^2+1=4,即a^2=3,所以双曲线方程为 (x^2)/3―y2=1,设点P(x0,y0),则有x0^2/3-y0^2=1(X大于等于根号3) ,解得 y0^2=x0^2/3-1(X大于等于根号3),因为 向量FP=(X0+2,y0) 向量OP=(X0,y0) , ,所以 向量OP*向量FP= 4x0^2/3+2x0-1 ,此二次函数对应的抛物线的对称轴为 ,因为 ,所以当X=根号3 时, 取得最小值 的取值范围是[3+2根号3,正无穷)

原点O和F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点.p是双曲线右支任意一点则向量OP乘OF取值范 已知F1,F2分别是(x^2)/(a^)-(y^2)/(b^2)=1的左右焦点,已坐标原点O为圆心,OF1为半径的圆与双曲线在第已知F1,F2分别是双曲线(x^2)/(a^)-(y^2)/(b^2)=1的左右焦点,已坐标原点O为圆心,OF1为半径的 已知F1、F2分别是双曲线x^ 2/a^ 2-y^ 2/b^ 2=1(a>0,b>0)的左右焦点,以座标原点O为圆心,OF1为半径的圆与...已知F1、F2分别是双曲线x^ 2/a^ 2-y^ 2/b^ 2=1(a>0,b>0)的左右焦点,以座标原点O为圆心,OF1为半径的圆 已知双曲线x^2-y^2=1的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线(2013绍兴市模拟)已知双曲线x^2-y^2=1(a>0,b>0)的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线 若点O和点F(-2,0)分别是双曲线x^2/a^2-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则OP*FP的取值范围是___ 若点O和点F(-2,0)分别是双曲线x^2/a-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点.则向量OP*向量FP的取值范围 若点O和点F(-2,0)分别是双曲线x^2/a-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点.则向量OP*向量FP的取值范围 问一道双曲线的数学题x^2/a^2-y^2/b^2=1(a〉0,b〉0)的一个焦点作圆x^2+y^2=a^2的两条切线,切点分别是A,B,若∠AOB=120°(O为坐标原点),则双曲线C的离心率为__. p是x²/8+y²/4=1上的动点,F₁F₂分别是左右焦点,O是原点,求| |PF₁|-|PF为[0,√2] , 已知双曲线x^2/a^2—y^2/ b^2 =1(a>b>0)和圆O:x^2+y^2=b^2(其中原点O为圆心),过双曲线C上一点P(X.,Y.) 如图p是双曲线x^2/4-y^2=1右支(在第一象限内)上的任意一点,A1 A2分别是左右顶点.O是坐标原点,直线PA1 POPA2 的斜率分别为k1k2k3 则k1*k2*k3 值的范围是 A (0,1) B (0,1/2) C(0,1/4) D(0,1/8) 若双曲线x^2/a^2-y^2/b^2=1的离心率为(1+根号5)/2,A,F分别是它的左顶点和右焦点,B坐标为(0,b),则∠ABF大小 已知点E,F分别是离心率为(根号5 +1)/2的双曲线x^2 /a^2 -y^2 /b^2 =1 的左顶点和已知点E,F分别是离心率为(根号5 +1)/2的双曲线x^2 /a^2 -y^2 /b^2 =1 的左顶点和右焦点,再记M(0,b),则∠EMF等于? 1.已知双曲线y=k/x(k>0),过M(m,m)【m>根号k】作MA⊥x轴,MB⊥y轴,垂足分别是A和B,MA、MB分别交双曲线y=k/x(k>0)于点E、F(1)若k=3,m=4,求直线EF的解析式2.在平面直角坐标系中,点O是坐标原点,已知直线y=x 四边形OABC是平行四边形,O是坐标原点,A,C坐标分别是(1,2)和(3,0)则S=平行四边形ABCD=? 函数f(X) g(x)分别是定义域为R的奇函数和偶函数,且f(x)-g(x)=e^x,比较f(2),f(3),g(o)大小主要说思路! 双曲线 F为双曲线C:x^2/a^2+y^2/b^2=1(a>0,b>0)的右焦点F为双曲线C:x^2/a^2+y^2/b^2=1(a>0,b>0)的右焦点.P为双曲线C右支上一点,且位于x轴上方,M为左准线上一点,O为坐标原点.已知四边形OFPM为平行四边 已知双曲线x^2/a^2—y^2/ b^2 =1(a>b>0)和圆O:x^2+y^2=b^2(其中原点O为圆心)过双曲线C上一点P(X.,Y.)引圆O的两条切线,切点分别为A、B.(1)若双曲线C上存在点P,使得∠APB=90 º,求双曲线离心率e的取值范围