如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:21:00
如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若
如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B
的坐标为(3,0)
(1)求抛物线的解析式;
(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线 PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小.若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点过点M 作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,请说明理由.
=
如图1,抛物线y=ax^2+bc+c(a≠0)的顶点为c(1,4),交x轴于A、B两点,交y轴于D,其中B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若
(1)设所求抛物线的解析式为:y=a(x-1)2+4,依题意,将点B(3,0)代入,得:
a(3-1)2+4=0
解得:a=-1
∴所求抛物线的解析式为:y=-(x-1)2+4
(2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
∵点E在抛物线上且点E的横坐标为2,将x=2代入抛物线y=-(x-1)2+4,得
y=-(2-1)2+4=3
∴点E坐标为(2,3)
又∵抛物线y=-(x-1)2+4图像分别与x轴、y轴交于点A、B、D
∴当y=0时,-(x-1)2+4=0,∴ x=-1或x=3
当x=0时,y=-1+4=3,
∴点A(-1,0),点B(3,0),点D(0,3)
又∵抛物线的对称轴为:直线x=1,
∴点D与点E关于PQ对称,GD=GE…………………②
分别将点A(-1,0)、点E(2,3)代入y=kx+b,得:
解得:
过A、E两点的一次函数解析式为:y=x+1
∴当x=0时,y=1
∴点F坐标为(0,1)
∴ ………………………………………③
又∵点F与点I关于x轴对称,
∴点I坐标为(0,-1)
∴ ………④
又∵要使四边形DFHG的周长最小,由于DF是一个定值,
∴只要使DG+GH+HI最小即可
由图形的对称性和①、②、③,可知,
DG+GH+HF=EG+GH+HI
只有当EI为一条直线时,EG+GH+HI最小
设过E(2,3)、I(0,-1)两点的函数解析式为:y=k1x+b1(k1≠0),
分别将点E(2,3)、点I(0,-1)代入y=k1x+b1,得:
(1)设所求抛物线的解析式为:y=a(x-1)2+4,依题意,将点B(3,0)代入,得:
a(3-1)2+4=0
解得:a=-1
∴所求抛物线的解析式为:y=-(x-1)2+4
(2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI……...
全部展开
(1)设所求抛物线的解析式为:y=a(x-1)2+4,依题意,将点B(3,0)代入,得:
a(3-1)2+4=0
解得:a=-1
∴所求抛物线的解析式为:y=-(x-1)2+4
(2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
∵点E在抛物线上且点E的横坐标为2,将x=2代入抛物线y=-(x-1)2+4,得
y=-(2-1)2+4=3
∴点E坐标为(2,3)
又∵抛物线y=-(x-1)2+4图像分别与x轴、y轴交于点A、B、D
∴当y=0时,-(x-1)2+4=0,∴ x=-1或x=3
当x=0时,y=-1+4=3,
∴点A(-1,0),点B(3,0),点D(0,3)
又∵抛物线的对称轴为:直线x=1,
∴点D与点E关于PQ对称,GD=GE…………………②
分别将点A(-1,0)、点E(2,3)代入y=kx+b,得:
解得:
过A、E两点的一次函数解析式为:y=x+1
∴当x=0时,y=1
∴点F坐标为(0,1)
∴ ………………………………………③
又∵点F与点I关于x轴对称,
∴点I坐标为(0,-1)
∴ ………④
又∵要使四边形D
收起