n的n+1次方和(n+1)的n次方的大小关系.2004的2003次方与2003的2004次方,谁大谁小?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:35:51
n的n+1次方和(n+1)的n次方的大小关系.2004的2003次方与2003的2004次方,谁大谁小?
n的n+1次方和(n+1)的n次方的大小关系.
2004的2003次方与2003的2004次方,谁大谁小?
n的n+1次方和(n+1)的n次方的大小关系.2004的2003次方与2003的2004次方,谁大谁小?
[n^(n+1)]/[(n+1)^n]
=[n/(n+1)]^n*n
={[n^(1+1/n)]/(n+1)]^n
n^(1+1/n)>n+1
故:n^(n+1)>(n+1)^n
2004^2003<2003^2004
当n≤2时,n^(n+1)<(n+1)^n
当n≥3时,n^(n+1)>(n+1)^n
证明:显然两者均为正数
(n+1)^n/n^(n+1)=(1+1/n)^n/n
∵n∈N*,∴(1+1/n)^n
当n=1时(n+1)^n=2,n^(n+1)=1
当n=2时...
全部展开
当n≤2时,n^(n+1)<(n+1)^n
当n≥3时,n^(n+1)>(n+1)^n
证明:显然两者均为正数
(n+1)^n/n^(n+1)=(1+1/n)^n/n
∵n∈N*,∴(1+1/n)^n
当n=1时(n+1)^n=2,n^(n+1)=1
当n=2时(n+1)^n=9,n^(n+1)=8
∴当n≤2时,n^(n+1)<(n+1)^n
∴当n≥3时,n^(n+1)>(n+1)^n
2004的2003次方<2003的2004次方
收起
n=1
n的n+1次方<(n+1)的n次方
n=2
n的n+1次方<(n+1)的n次方
n=3
n的n+1次方<(n+1)的n次方
n=4
n的n+1次方>(n+1)的n次方
n=5
n的n+1次方>(n+1)的n次方
.........
n的n+1次方>(n+1)的n次方
所以
2004的2003次方 > 2003的2004次方
同三楼