求使函数y=x^2+ax-2/x^2-x+1的值域为(-∝,2)的a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:48:42

求使函数y=x^2+ax-2/x^2-x+1的值域为(-∝,2)的a的取值范围
求使函数y=x^2+ax-2/x^2-x+1的值域为(-∝,2)的a的取值范围

求使函数y=x^2+ax-2/x^2-x+1的值域为(-∝,2)的a的取值范围
因为分母=x^2-x+1=(x-1/2)^2+3/4.故可知,函数定义域是R,且分母恒为正.又由题设值域知,对任意实数x,恒有f(x)-2<0,即恒有{[x^2+ax-2]/[x^2-x+1]}-2<0===>-[x^2-(a+2)x+4]/[x^2-x+1]<0===>[x^2-(a+2)x+4]/[x^2-x+1]>0===>由分母恒大于0,得:对任意实数x,恒有x^2-(a+2)x+4>0===>(a+2)^2-16<0===>-6

y=(x^2+ax-2)/(x^2-x+1)
=[(x^2-x+1)+(a+1)x-3]/(x^2-x+1)
=1+[(a+1)x-3]/(x^2-x+1)
值域为(-∝,2),则
1+[(a+1)x-3]/(x^2-x+1)<2;
[(a+1)x-3]/(x^2-x+1)<1;
∵根据判别式判定,x^2-x+1>0;
则(a+...

全部展开

y=(x^2+ax-2)/(x^2-x+1)
=[(x^2-x+1)+(a+1)x-3]/(x^2-x+1)
=1+[(a+1)x-3]/(x^2-x+1)
值域为(-∝,2),则
1+[(a+1)x-3]/(x^2-x+1)<2;
[(a+1)x-3]/(x^2-x+1)<1;
∵根据判别式判定,x^2-x+1>0;
则(a+1)x-3x^2-(a+2)x+4>0.
x∈R,则根据判别式来判定,(a+2)^2-4×4=a^2+4a-12<0.
∴-4

收起

-2