f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在 (0 正无穷)有最大值5,H(x)在(负无穷~0)上的最小值f(x).g(x)均为奇函数.h(x)=af(x)+bg(x)+2在(0~正无穷)上有最大值5.求h(x)在(负无穷~0)上的最小值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:04:59
f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在 (0 正无穷)有最大值5,H(x)在(负无穷~0)上的最小值f(x).g(x)均为奇函数.h(x)=af(x)+bg(x)+2在(0~正无穷)上有最大值5.求h(x)在(负无穷~0)上的最小值.
f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在 (0 正无穷)有最大值5,H(x)在(负无穷~0)上的最小值
f(x).g(x)均为奇函数.h(x)=af(x)+bg(x)+2在(0~正无穷)上有最大值5.求h(x)在(负无穷~0)上的最小值.
f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在 (0 正无穷)有最大值5,H(x)在(负无穷~0)上的最小值f(x).g(x)均为奇函数.h(x)=af(x)+bg(x)+2在(0~正无穷)上有最大值5.求h(x)在(负无穷~0)上的最小值.
H(-x)=af(-x)+bg(-x)+2=-[af(x)+bg(x)]+2,x在(0,正无穷)
则-x在(负无穷,0)
H(x)最大为5,所以af(x)+bg(x)最大为3
所以-[af(x)+bg(x)]最小为-3
所以H(x)在(负无穷,0)上最小值为-3+2=-1
综上所诉,为-1
设x小于0,则-x大于0。
h(-x)=af(-x)+bg(-x)+2=5
因为f(x),g(x)都是奇函数,所以f(-x)=-f(x),g(-x)=-g(x),h(-x)=-h(x)。
所以h(-x)=-af(x)-bg(x)+2=5
则-h(x)=-af(x)-bg(x)+2=5
即h(x)=af(x)+bg(x)-2=3-2=1
是-1
奇函数加奇函数仍为奇函数由奇函数性质可知当x=0时H(x)=2故H(x)的对称轴为x=2所以H(x)max+H(x)max=2*2=4所以最小值为-1