n(n+1)+(n-1)n+……+1*2=(1/6)n(n+1)(n+2)的推导过程,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 19:14:29
n(n+1)+(n-1)n+……+1*2=(1/6)n(n+1)(n+2)的推导过程,
n(n+1)+(n-1)n+……+1*2=(1/6)n(n+1)(n+2)的推导过程,
n(n+1)+(n-1)n+……+1*2=(1/6)n(n+1)(n+2)的推导过程,
题目有误,正确答案应该是n(n+1)(n+2)/3(可以代n=1验证)
∑k(k+1)
=∑(k^2+k)
=∑[(k+1)^3-k^3-1]/3
=1/3∑[(k+1)^3-k^3]-∑1/3
=1/3[(2^3-1)+(3^3-2^3)+..+(n+1)^3-n^3]-n/3
=[(n+1)^3-1-n]/3
=n(n+1)(n+2)/3
2^n/n*(n+1)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明(1/n)^n+(2/n)^n+……+(n-1/n)^n > (n-1)/2(n+1) 对任意n正整数成立
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大的极限(1/(n^2+n+1 ) +2/(n^2+n+2) +3/(n^2+n+3) ……n/(n^2+n+n)) 当N越于无穷大的极限
1+(n+2)+(2n+3)+(3n+4)+(4n+5)+……((n-1)n+n)的答案
{[(1+n)(2+n)(3+n)……(n+n)]^(1/n)}/n当趋向正无穷 求其极限
证明不等式:(1/n)的n次方+(2/n)的n次方+……+(n/n)的n次方
e^(1/n)+e^(2/n)+e^(3/n)+…+e^(n-1/n)+e^(n/n)=?
(n+2)!/(n+1)!
数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n
设f(n)=1/n+1+1/n+2+1/n+3+……+1/3n(n∈N+),则f(n+1)-f(n)=?
C(n,0)+C(n,1)+C(n,2)+…+C(n,n-2)+C(n,n-1)+C(n,n)为什么等于什么
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
证明:(3^n)*(2^1/n)>(3^n)+(2^1/n)……n属于正整数
组合:C(n,0)+C(n,1)+……+C(n,n)=n^2
VB编程n!+(n+1)!+(n+2)!+(n+3)!+……+(n+m)!要有控件
lim(1/n^2+4/n^2+7/n^2+…+3n-1/n^2)
[n+(n+1)+(n+2)+……+1]化简