若集合M={θ|sinθ≥1/2,0≤θ≤π },N={θ|cosθ≤1/2,0≤θ≤π},则M∩N=?如题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:28:54

若集合M={θ|sinθ≥1/2,0≤θ≤π },N={θ|cosθ≤1/2,0≤θ≤π},则M∩N=?如题,
若集合M={θ|sinθ≥1/2,0≤θ≤π },N={θ|cosθ≤1/2,0≤θ≤π},则M∩N=?
如题,

若集合M={θ|sinθ≥1/2,0≤θ≤π },N={θ|cosθ≤1/2,0≤θ≤π},则M∩N=?如题,
这题其实没什么过程 你们学了三角函数的图形没,图一画出来就可以写答案了 其实画图是最直观的方法,慢慢来就好
记得采纳啊

已知集合M={θ|sinθ 若集合M={θ|sinθ≥1/2,0≤θ≤π },N={θ|cosθ≤1/2,0≤θ≤π},则M∩N=?如题, 若集合M={θ丨sinθ≥1/2,0≤θ≤π},N={θ丨cosθ≤1/2,0≤θ≤π},求M∩N 已知集合M={α|sinα≥1/2,0 sinθ=m-3/m+5,cosθ=4-2m/m+5,π/2〈θ〈π,求m的集合 M={θ丨sinθ≥1/2,0 已知奇函数f(x)在(负无穷,0),(0,正无穷)上有意义,且在(0,正无穷)单调递增,f(1)=0,又函数g(θ)=sin^2+mcosθ-2m,若集合M={m|g(θ)集合N里面是f(g(θ)) 若集合M={α |sinα≥1/2,0≤α≤π),N={α |cosα≤1/2,0≤α≤π},求M∩N. 已知奇函数f(x)在(负无穷,0),(0,正无穷)上有意义,且在(0,正无穷)单调递增,f(1)=0,又函数g(θ)=sin^2+mcosθ-2m,若集合M={m|g(θ)求M和N的交集 若sinθ+cosθ=1,则θ的取值集合为 sinθ≥1/2且 cosθ≤1/2.求θ集合要详解.为什么没人- - 设两个复数集合A={z|z=a+i(1-a^2),a∈R}设两个复数集合A={z|z=a+i(1-a^2),a∈R},B={z|z=sinθ+i*(m-(√3/2)sin2θ)},m∈R,θ∈[0,π/2],若A∩B不等于空集,求实数m的取值范围. 已知奇函数f(x)在(负无穷,0),(0,正无穷)上有意义,且在(0,正无穷)单调递增,f(1)=0,又函数g(θ)=sin^2+mcosθ-2m,若集合M={m|g(θ) 已知集合M={a+2cosθ,a+cosθ,a},集合N={a,asinθ,a(sinθ)^2},且M=N,求实数a和θ的值. 已知集合M={a+2cosθ,a+cosθ,a},集合N={a,asinθ,a(sinθ)^2},且M=N,求实数a和θ的值.RT, 关于直线系M:xcosθ+(y-2)sinθ=1(0〈=θ〈=2π)是个怎么样的直线系?课堂上老师说是一个圆的所有切线的集合. 集合M{sinθ〉cosθ,0〈=θ〈=π},N={θ|tanθ〉1},则M∩N等于只是道填空 分少了点 1.已知f(x)=2sin(2x+θ+π/3).(1):若0≤θ≤π,求θ,使函数f(x)是偶函数(2):在(1)成立的条件下,求满足f(x)=1,x∈[-π,π]的x的取值集合.2.函数y=3cos(kx+π/4)(k∈N).若对任意的m∈R,在[m,m+1]之间f(x)至少取得最大值