利用柯西不等式证明:对任意正数a,b,c有a^2+b^2+c^2≥ab+bc+ca,此式当且仅当a=b=c时取=号柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:43:03

利用柯西不等式证明:对任意正数a,b,c有a^2+b^2+c^2≥ab+bc+ca,此式当且仅当a=b=c时取=号柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2
利用柯西不等式证明:对任意正数a,b,c有a^2+b^2+c^2≥ab+bc+ca,此式当且仅当a=b=c时取=号
柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2

利用柯西不等式证明:对任意正数a,b,c有a^2+b^2+c^2≥ab+bc+ca,此式当且仅当a=b=c时取=号柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2
(a^2+b^2+c^2)(b^2+c^2+a^2)>=(ab+bc+ca)^2.
这不就结了.轮换对称那是这个式子的基本面貌