三角形ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且三角形ABC的重心在原点,则过B、C两点的直线方程为………
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 22:20:41
三角形ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且三角形ABC的重心在原点,则过B、C两点的直线方程为………
三角形ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且三角形ABC的重心在原点,则过B、C两点的直线方程为………
三角形ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且三角形ABC的重心在原点,则过B、C两点的直线方程为………
这明显是数学题目嘛~貌似是高2的
解:
由已知可设抛物线
y^2=2p(x+p/2),
以A(-6,8)代入,易得
y^2=32(x+8).
原点为重心,且A已知,
故易得BC中点M(3,-4).
设BC为:
{x=3+tcosθ,
{y=-4+tsinθ.
代入抛物线整理得,
(sinθ)^2t^2-8(sinθ+4cosθ)t-336=0....
全部展开
解:
由已知可设抛物线
y^2=2p(x+p/2),
以A(-6,8)代入,易得
y^2=32(x+8).
原点为重心,且A已知,
故易得BC中点M(3,-4).
设BC为:
{x=3+tcosθ,
{y=-4+tsinθ.
代入抛物线整理得,
(sinθ)^2t^2-8(sinθ+4cosθ)t-336=0.
因M是中点,故方程两根和为0,即
8(sinθ+4cosθ)/(sinθ)^2=0
→sinθ+4cosθ=0
→tanθ=-4.
故直线BC为
y+4=-4(x-3),
即4x+y-8=0.
收起
由已知可设抛物线
y^2=2p(x+p/2),
以A(-6,8)代入,易得
y^2=32(x+8).
原点为重心,且A已知,
故易得BC中点M(3,-4).
设BC为:
{x=3+tcosθ,
{y=-4+tsinθ.
代入抛物线整理得,
(sinθ)^2t^2-8(sinθ+4cosθ)t-336=0.
因M...
全部展开
由已知可设抛物线
y^2=2p(x+p/2),
以A(-6,8)代入,易得
y^2=32(x+8).
原点为重心,且A已知,
故易得BC中点M(3,-4).
设BC为:
{x=3+tcosθ,
{y=-4+tsinθ.
代入抛物线整理得,
(sinθ)^2t^2-8(sinθ+4cosθ)t-336=0.
因M是中点,故方程两根和为0,即
8(sinθ+4cosθ)/(sinθ)^2=0
→sinθ+4cosθ=0
→tanθ=-4.
故直线BC为
y+4=-4(x-3),
即4x+y-8=0.
收起